Review

The rodent hippocampus and spatial memory: from synapses to systems

S. J. Martin^{a,*} and R. E. Clark^b

^a Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ (UK),

Fax.: +441316504579, e-mail: stephen.martin@ed.ac.uk

^bDepartment of Psychiatry, 0603, UCSD and Veterans Affairs Medical Center, San Diego, La Jolla, California 92093 (USA)

Received 17 July 2006; received after revision 24 October 2006; accepted 16 November 2006 Online First 26 January 2007

Abstract. Although its operations are not limited to the spatial domain, there is a near consensus that the hippocampus plays a critical role in memory for place. This review aims to explore this role, with a particular emphasis on the functions performed by distinct hippocampal subregions. The use of innovative lesioning techniques, localized pharmacological treatments, and molecular genetic interventions is offering increasingly precise brain-regional specificity and temporal control. Together with the electrophysiological recording of neuronal activity, these techni-

ques are beginning to shed light on the functioning of specific components of the hippocampal circuitry in the different phases of memory – encoding, storage, consolidation, and retrieval. In view of these developments, we examine the involvement of the hippocampus in the encoding versus retrieval of spatial memory, before turning to the issue of long-term information storage and the role of 'cellular' and 'systems' consolidation processes in the formation of lasting memories.

Keywords. Rat, mouse CA1, CA3, dentate, learning, LTP, LTD.

General introduction

The hippocampal formation, a structure whose surface area rivals that of the neocortex in rats [1], is perhaps the most intensively researched structure in the central nervous system. Extending caudally between the neocortex and diencephalon before curving ventrally toward the temporal lobe, the hippocampus receives polymodal sensory information via its inputs from the entorhinal cortex and enjoys extensive afferent and efferent connectivity with subcortical

and frontal cortical structures [2]. Perpendicular to its long axis, the hippocampal formation can be divided into distinct subfields based on morphological and cytoarchitectonic criteria: in this review, we use the term 'hippocampus' to refer only to the subfields of CA1, CA2, and CA3, plus the dentate gyrus. Numerous theories of hippocampal function have been advanced over the past few decades, and a near consensus has been reached that the structure plays a role in memory. But the specific nature of this role remains uncertain.

In their seminal synthesis, O'Keefe and Nadel [3] made a highly convincing case that the hippocampus encodes maps of space in a literal Euclidean sense.

^{*} Corresponding author.

This view was supported by multiple lines of evidence. but the discovery of hippocampal 'place cells' [4] neurons that exhibit place-specific firing - was especially influential. O'Keefe and Nadel argued that extra-hipppocampal 'taxon' systems are capable of acquiring and processing stimulus-response associations and egocentric spatial information, such as 'turn left at the end of the alley.' The hippocampus, in contrast, was held to be unique in supporting an 'allocentric' map of space - i.e., one based on the relationships of external spatial cues and not tied to any internal reference frame. Building on early mazelearning studies dating back at least as far as the 1950s [see ref. 4 for a review], experimental damage to the rodent hippocampal formation has been found to cause severe deficits in learning and memory in a wide range of spatial tasks conducted in the radial-arm maze [5], watermaze [6-8], and T-maze [9], to name just a few. Although several authors have emphasized the participation of the hippocampus in non-mnemonic functions [10–17], a role for the structure in spatial memory is in little doubt for most researchers; the issue is whether place memory is simply one example, or one component, of a broader category of memory for which the hippocampus is required [see refs. 18, 413]. Suggestions include declarative memory [19], episodic memory [20–22, 414, 415], configural or conjunctive memory [23, 24], relational memory [25], contextual memory [26, 27], the acquisition of arbitrary visuomotor mappings [28], and the association of temporally discontiguous events [29, 30]. We likewise feel that there is compelling evidence for a hippocampal role beyond memory for place; thus, although the present review focuses on studies of the rodent hippocampus and spatial memory, we do not intend to imply that its operations are limited to this

In preparing this review we have not attempted to present a systematic overview of theories of hippocampal function [see 31-36]. Our aim is to highlight a few lines of contemporary research that, in our view, are beginning to offer mechanistic insights into the operations performed by the rodent hippocampus during the different phases of spatial memory – encoding, consolidation and retrieval. The scope of this article regrettably excludes a vast body of relevant work in humans and non-human primates, and, for the most part, the rodent literature concerning several non-spatial behavioral paradigms, including recognition memory, contextual fear conditioning [37–43], inhibitory avoidance [44–47], and several others. Our focus is perhaps more systems orientated than might be expected, but the multi-disciplinary nature of memory research makes this difficult to avoid: many of the same issues are equally relevant to molecular, cellular, and systems-level analyses of learning and memory.

Evidence for a hippocampal role in place learning and memory

The hippocampus and incremental place learning

Hippocampal damage often causes severe impairments in the ability of rodents to learn and remember a location in space defined by distal visual cues (see the Introduction). For example, in the watermaze reference memory task commonly used to assess learning and memory in rodents [48, 49] (see box 1), hippocampal lesions severely limit the rate of learning [6, 7]. However, after extensive training, lesioned rats can gradually learn to navigate to a particular place, and to search accurately in this location during probe trials [50, 51] (see Fig. 1). In other words, spatial memories can eventually be acquired by extrahippocampal brain structures alone.

In addition to overtraining, certain cueing or shaping procedures can be effective in establishing place memory in hippocampally lesioned rats [52–54]. But without the hippocampus, spatial memories are not merely acquired more slowly, there is also evidence that they are qualitatively different from 'normal' memories [50, 55]. Indeed, hippocampus-independent place memory in the watermaze is often characterized by its inflexibility [54, 56, 57], and a reliance on egocentric strategies – i.e., turning in a particular direction – is sometimes indicated in plus-maze tasks [58, 59]. Such findings are consistent with the idea that the brain can employ alternative strategies and neural substrates for solving certain spatial tasks after the hippocampus is removed.

Box 1. The watermaze reference memory task

In the watermaze spatial reference memory task, animals learn to find a submerged escape platform occupying a fixed location in a large pool of water based on its location relative to extra-maze cues located in the testing room. These typically include curtains, posters, equipment racks, etc. Testing usually begins with one or more days of pretraining, in which animals learn to swim to a randomly located, visually cued platform. After this, training to find a single hidden platform in an unchanging location proceeds for several days, with multiple trials conducted in each daily session. Performance can be assessed by recording latency to reach the escape platform during acquisition, and also by the measurement of time spent in the correct area of the pool during occasional probe trials conducted with the platform absent [see ref. 60].

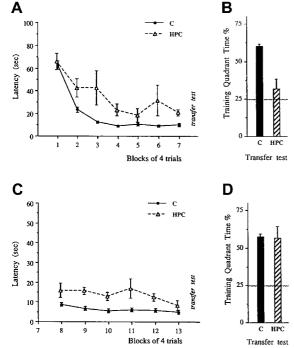
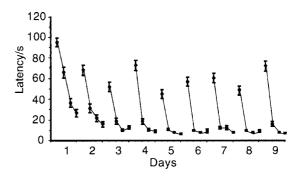
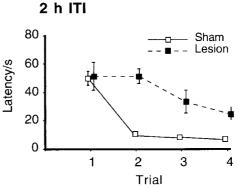



Figure 1. The hippocampus and incremental place learning. Hippocampal lesions reduce the rate of incremental learning in a spatial reference memory task, but normal levels of place memory can be attained after extensive training. (A; left-hand panel) The acquisition of a watermaze reference memory task (see box 1) by rats with ibotenic lesions of the hippocampus, compared to shamlesioned animals. Hippocampal lesions did not prevent a decline in escape latencies over trials, but this phenomenon might simply have reflected the acquisition of an effective search strategy, such as circling at the correct radius from the pool walls. In fact, lesioned rats performed at chance levels in a probe trial conducted after the first 28 trials, despite the accurate searching observed in shams (A; right-hand panel). After the first probe trial, rats were overtrained for a further 24 trials (B; left-hand panel). In a second probe trial conducted after overtraining, the performance of lesioned rats was substantially above chance, and equivalent to that of shamoperated controls (B; right-hand panel). [Figure reprinted with permission from ref. 50; copyright 1990, Blackwell Publishing.]

Rapid, one-trial learning


Although incremental learning of place information over multiple trials is possible without a hippocampus, the structure is critically important for rapid encoding, particularly of trial-unique spatial information. Onetrial memory is often assessed using a delayed matching-to-place version of the watermaze procedure [52, 61-63] (see box 2 and Fig. 2). Performance in this version of the task is severely impaired in animals with large hippocampal lesions [52, 63–65], and extensive task experience does not alleviate the deficit. For example, Steele and Morris [63] found that rats given complete hippocampal lesions after 8 days of pretraining (4 trials per day), still failed to show any improvement in escape latency between trials 1 and 2 after a further 8 days of postoperative training, even when the inter-trial interval was as short as 15 s (see Fig. 2).


A Acquisition of 1-trial matching-to-place

B Post-operative performance

15 s ITI between T1 and T2

Figure 2. The hippocampus and one-trial learning. Rapid, one-trial spatial learning is impossible without a hippocampus. (A) The acquisition of matching-to-place performance over the 9 days of pretraining in a DMP task (see box 2). Note the development of a sharp fall in latency between trials 1 and 2, indicating one-trial learning of each novel platform location. (B) The subsequent mean performance of rats with ibotenic acid lesions of the hippocampus versus sham-operated animals as a function of the interval between trials 1 and 2 (i.e., 15 s or 2 h) over the 9 days of postoperative training. Each data point was generated by averaging the latency scores obtained during successive presentations of the same intertrial interval. In the lesioned group, no improvement was evident between the first two trials, irrespective of the delay between them. [Figure reprinted with permission from ref. 63; copyright 1999, Wiley-Liss, Inc.]

Box 2. The watermaze delayed matching-to-place task

In contrast to the spatial reference memory paradigm, the watermaze delayed matching-to-place (DMP) task (see Fig. 2) requires the learning of a novel platform location on each testing day. A critical performance measure is the improvement in escape latency between the first and second trials of a particular day - an index of the one-trial acquisition of spatial information. However, the occasional addition of a probe trial with the platform temporarily absent on the second trial of a day can provide a more sensitive measure of memory than escape latency alone [66]. Although the difference in latency between trial 1 and 2 ('savings') is usually the primary measure of memory, four or more trials are often conducted in an effort to reinforce the matching-toplace rule, and to avoid potential carry-over effects from one day to the next.

The impact of lesions made before or after learning

In the studies discussed so far, learning and memory were always assessed following a brain lesion. This kind of experiment can tell us whether a particular structure is necessary for a specific form of learning. But interventions made after learning provide additional information: they permit targeting of a putative memory substrate after a memory has been formed. This prevents the development of compensatory strategies and the recruitment of alternative brain areas, and allows the time course of a memory's dependence on a particular brain structure to be assessed.

A striking example of the difference between pre- and post-training damage is provided by a study in which dorsal hippocampal lesions (occupying 40% of the total hippocampal volume) were made either before, or immediately after, place learning in a watermaze [67]. Whereas lesions made before training had no effect on new learning, lesions made after training disrupted memory retention. These results suggest that partial hippocampal damage prior to training spares sufficient hippocampal tissue to support nearnormal task acquisition; conversely, a memory trace formed in the intact hippocampus, and distributed widely within the structure, is substantially degraded when even a small part of the hippocampus is subsequently removed. In later studies, the longitudinal fiber system within CA3 was transected using small knife cuts; this manipulation produces a striking impairment of preoperatively acquired place memory, but the impact on new spatial learning is minimal [68, 69]. These findings indicate that longitudinal hippocampal connectivity is involved in the storage and/or retrieval of recently formed spatial memory, a result that would have been missed using a purely anterograde design (see 'Memory encoding and retrieval' below).

Findings such as these extend the notion of hippocampus dependence and illustrate the need for caution in interpreting the results of an intervention that disrupts the normal functioning of a brain structure prior to behavioral testing. In fact, the study of retrograde memory impairments has been a cornerstone of research into memory consolidation and the formation of stable, long-term memories, a theme that will be further explored in 'Systems consolidation'.

The role of distinct hippocampal subregions

The use of regionally specific lesions. In addition to large hippocampal lesions targeting both the dentate gyrus and CA subfields, there is a substantial literature on the effects of more selective hippocampal damage. Early studies indicated that kainic acid lesions of CA3 can impair spatial working memory in the 8-arm radial maze [70, but see 71]; such lesions also impair matching-to-place performance [64]. Colchicine lesions of the dentate gyrus have likewise been reported to impair spatial tasks, with the largest deficits again observed in one-trial learning [64, 72]. Permanent lesion studies have since been complemented by the use of reversible subfield-specific inactivation [73-75]. In recent years, we have begun to see the development of ever more selective manipulations, driven by the wealth of ideas about the significance of various components of the hippocampal circuitry. The 'classical' view of the hippocampal trisynaptic loop (entorhinal cortex – dentate gyrus – CA3 – CA1) focuses on functional connectivity in a transverse direction, perpendicular (approximately) to the long axis of the structure [76, 77]. Current thinking is further informed by an appreciation of the existence of extensive intrinsic connectivity along the long axis of the hippocampus [78], the longitudinal heterogeneity of extrinsic afferent and efferent connections (see box 3), and the existence of substantial direct entorhinal input to areas CA3 and CA1 [see ref. 2 for review]. A schematic view of the intrinsic connectivity of the hippocampus is provided in Figure 3.

The dentate gyrus. A topic of long-standing interest is the role of the dentate-CA3 network in pattern separation versus pattern completion [see ref. 79]. The latter refers to the orthogonalization or decorrelation of overlapping input patterns, a process that may be critical for efficient learning. In more concrete terms, pattern separation might serve to disambiguate places with overlapping features – a situation that is

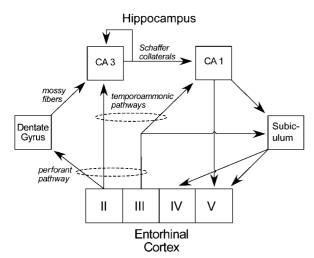


Figure 3. The hippocampal circuit. The hippocampus, defined here as the dentate gyrus (DG), CA3, CA2, and CA1, is anatomically situated to receive highly processed information from widespread neocortical regions through three temporal cortical areas known as the entorhinal, perirhinal, and postrhinal cortices, and through other direct projections from extra-temporal areas. The hippocampus can be viewed as part of a hierarchically organized system of structures in the temporal lobe that is important for the formation of long-term memory. The main relay station for the transmission of sensory information to the hippocampus is the entorhinal cortex; layer II of this structure provides the major input to the hippocampus. This unidirectional projection, forming part of the perforant pathway, provides a substantial input to the DG, which, in turn, provides the major input to CA3 via the mossy fiber projection. There is also a smaller unidirectional projection to CA3 from layer II of the entorhinal cortex. CA3 provides the major input to CA1 via the Schaffer collateral/commissural pathway, but there is a substantial recurrent associational projection back to the CA3 field. CA1 also receives a direct temporoammonic projection from layer III of the entorhinal cortex (as does the subiculum). Both Schaffer collateral and temporoammonic projections to CA1 are unidirectional. CA1 primarily projects to the subiculum, but also sends a projection to entorhinal cortex layer V. The subiculum sends a prominent projection primarily to the entorhinal cortex layers IV and V [see ref. 2 for review]. The figure shows a simplified view of the way in which information enters the hippocampus from the superficial layers of the entorhinal cortex and then flows in a largely unidirectional, feed-forward, clockwise direction to ultimately return predominantly to the deep layers of the structure. From here, processed information can then be sent to widespread neocortical areas.

likely to be common in real-world environments. A role in pattern separation has long been attributed to the dentate gyrus, based, among other considerations, on the divergence of entorhinal inputs to the granule cell layer, the sparse connectivity of the mossy fiber projection to CA3 pyramidal cells, and the desirability of decorrelated inputs to the putative autoassociative network of CA3 [e.g. ref. 80, 81]. This notion has some behavioral support: lesions of the dentate gyrus impair performance in a spatial matching-to-sample task, but only when the spatial separation between the target location and an unrewarded foil is small [82–84]. During the 1990s, growing evidence led to a widespread belief that neurogenesis occurs in several

regions of the adult brain, including the dentate gyrus [85]. Although in recent years the formation of new granule cells in this region has been implicated in learning and memory under some circumstances [see ref. 86 for review], it should be emphasized that it is far from clear whether the impairments are related to neurogenesis *per se* or to some non-specific effect of the method used to disrupt neurogenesis. Interestingly, a recent computational model of hippocampal functioning implicates dentate neurogenesis in the creation of distinct memory traces for very similar items or events occurring at different times – effectively a process of pattern separation [87].

CA3. In contrast to the dentate gyrus, the extensive recurrent connectivity of CA3 appears ideally suited to pattern completion - the reconstruction of a complete output pattern from a degraded input. This is a basic property of many associative neural networks, and may be useful for maintaining stable representations in the face of incomplete sensory data, or trivial alterations of an otherwise stable environment. The idea that CA3 comprises an autoassociative network specialized for the rapid encoding of new information has a long history [80, 84, 88, 89]. CA3 pyramidal cells make multiple recurrent connections with other pyramidal cells in the subfield – an arrangement reminiscent of re-entrant neural network architectures that are capable of pattern completion [80] – and these recurrent synapses exhibit associative, NMDA-receptor-dependent long-term potentiation (LTP). There is now considerable behavioral and physiological evidence for this hypothesis, work that will be discussed in the 'Memory encoding and retrieval' section.

CA1. The dentate-CA3 network might not be necessary for all aspects of hippocampus-dependent memory: CA1, the final station in the trisynaptic loop, receives a substantial glutamatergic input from layer III of the entorhinal cortex via the direct temporoammonic projection, in addition to the Schaffer collateral input from CA3 (see Fig. 3; note that CA3 also receives a direct perforant path input from layer II of the entorhinal cortex). It has often been suggested that CA1 acts as a 'novelty detector,' detecting mismatches between cortical information concerning the current situation, with the stored predictions arriving from CA3 [e.g., refs. 11, 90–93]. The resulting novelty signal might then trigger the updating of stored information to eliminate the mismatch [94] (and see 'Cellular consolidation' below). A recent study of the temporal gating of temporoammonic inputs to CA1 by activity in the Schaffer collateral pathway offers an intriguing glimpse of how this match/mismatch signal

Box 3. Functional differentiation along the longitudinal axis of the hippocampus

Throughout much of this review, the dentate and CA subfields are discussed as if they were homogeneous entities throughout the entire length of the hippocampus. However, there is considerable evidence for functional heterogeneity along the long axis of the structure [2]. An examination of the effects of partial hippocampal lesions of varying sizes, sparing either the septal (dorsal) or temporal (ventral) portions of the hippocampus, revealed that septal lesions have a greater impact on spatial learning than temporal ones [103–106]. This is consistent with the fact that the septal two-thirds of the hippocampus receives most of the structure's visuospatial input, whereas the temporal third (or ventral hippocampus) is extensively connected with a range of brain regions implicated in motivation, emotion, and executive functions, including the prefrontal cortex and a number of subcortical structures [see refs. 2, 105, 107, 108 for reviews]. In a recent study, lesions of the dorsolateral band of the entorhinal cortex, a region that projects to the dorsal hippocampus, resulted in a disruption of spatial memory; conversely, lesions of the ventromedial band that projects to the ventral hippocampus impaired fear-related behavior in an elevated plusmaze [109]. Moreover, CA place fields exhibit pro-

gressively broader spatial tuning as one moves from the dorsal pole toward the intermediate [110, 111] and ventral [112] hippocampus. The initial findings of the Moser laboratory have since been confirmed by others [113-115]. It has been suggested that the ventral hippocampus might be more important for non-spatial memory or innate information processing, such as fear-related behavior and anxiety [16, 108, 113, 116–119], sensorimotor processes [16], or the utilization of internal cues [120, 121]. However, there is evidence that the temporal hippocampus might play a substantial role in spatial learning and memory under some circumstances [122, 123]. An alternative idea emphasizes the importance of sensorimotor integration along the longitudinal axis of the hippocampus, i.e., the linking of information received and processed at different septotemporal levels with the executive connections of the temporal hippocampus [16]. The observation of coherent longitudinal theta oscillations [124, 125] may be significant in this regard. According to this view, the septal and temporal poles of the hippocampus do not mediate entirely different forms of memory or information processing, but may play complementary but distinct roles in a single memory process.

might be calculated [95]. However, the role of CA1 versus other hippocampal subregions in novelty detection remains uncertain [11, 14, 96, 97].

In order to isolate the contributions of the direct cortical input to CA1, Brun and colleagues [98] disconnected CA1 from CA3 using a series of continuous knife cuts between the two subregions. Surprisingly, place fields formed normally, although their sharpness was slightly reduced, consistent with a prior study of the consequences of reducing CA3 activity [99]. Despite this, the acquisition and retention of a standard open-field watermaze reference memory task was impaired, although lesioned animals exhibited substantial place memory by the end of training. A subsequent test of spatial recognition memory yielded a different pattern of results, however. Rats were trained to swim around a narrow annular insert within a watermaze in order to find a hidden escape platform [100]. On probe trials, the platform was removed; recognition memory was then expressed as slower swimming in the target area of the corridor. Although performance in this task is disrupted by complete hippocampal lesions, no impairment was evident following disconnection of CA3 from CA1. These findings suggest that whereas the direct cortical projection to CA1 is sufficient for place recognition, the CA3-CA1 pathway is necessary for the rapid learning and recall of a spatial location and/ or navigation towards it, an idea to which we will return in the following section. Moreover, these data were the first to show conclusively that CA1 is capable of generating place-specific firing based solely on information contained in the entorhinal input, without the need for further processing via the trisynaptic circuitry. This result is perhaps not as surprising as it might seem – the pyramidal cells of the dorsocaudal medial entorhinal cortex are now known to exhibit substantial spatial modulation, with individual 'grid cells' displaying multi-peaked firing fields that form a regular lattice across the recording arena [101, 102].

Memory encoding and retrieval

Alternatives to brain lesions: the use of reversible and selective interventions

The lesion work discussed above has been complemented by pharmacological interventions that offer far greater temporal control, while sacrificing, to some extent, the spatial precision offered by current lesion techniques. Over the past two decades, a wealth of data has been accumulated indicating that pharmaco-

407

logical blockade of hippocampal NMDA receptors impairs memory formation [see refs. 126-129 for reviews]. Although the present review focuses on NMDA-dependent mechanisms, other receptors and their associated signaling pathways have also been implicated in synaptic plasticity and memory. Examples include the metabotropic glutamate receptors (mGluRs) [130–135], and L-type calcium channels [136] (see also 'Cellular consolidation' below).

In recent years, the use of transgenic and knockout animals has begun to offer opportunities beyond the scope of traditional techniques. In principle, the development of animals with conditional knockouts of selected genes can combine the excellent temporal control of pharmacological studies with a spatial selectivity - in terms of specific brain regions and even cell types - that greatly exceeds the potential of conventional lesions. Although many pioneering studies did not aim for this level of sophistication, genetic interventions have provided substantial evidence that disruption of key elements of the hippocampal plasticity machinery has commensurate effects on spatial memory [see refs. 137–146].

Synaptic plasticity and the rapid encoding of spatial information

The effects of inhibiting plasticity are not identical to the effects of large hippocampal lesions. First, blockade of hippocampal NMDA receptors results in a delay-dependent impairment in the watermaze matching-to-place task [63]. Memory is normal at a 15-s inter-trial interval, but severely impaired at delays of 20 min or more. In contrast, complete hippocampal lesions impair memory at all delays. These results imply that hippocampal NMDA-receptor-dependent processes – such as changes in synaptic efficacy – are unnecessary for the transient retention even of trialunique place information, but are essential for the encoding of a lasting memory trace. Intriguing data have recently been obtained concerning the role of different hippocampal subregions in the intermediateterm retention of spatial memory [147]. Local infusion of AP5 targeting the dentate gyrus or CA1 was sufficient to impair spatial working memory in a familiar environment at a training-test interval of 5 min, but no effect was observed at a 10-s delay. CA3 infusion, in contrast, had only a transient effect that disappeared with further training. However, definitive conclusions about the differential role of specific subregions may be premature. The longitudinal extent of drug diffusion achieved by Lee and Kesner [147] is likely to be somewhat limited owing to the requirement for subregional selectivity in the transverse plane – a problem that may be difficult to avoid with pharmacological interventions.

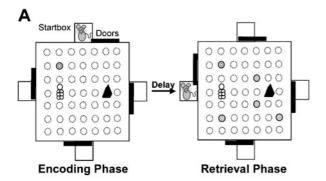
Second, we argued earlier that the hippocampus is particularly important for rapid learning, but this is true to an ever greater extent for hippocampal synaptic plasticity. Treatments that prevent NMDAreceptor-dependent plasticity can result in substantial deficits in the acquisition of spatial reference memory tasks - this is true of both pharmacological blockade of NMDA receptors [126, 127], electrophysiological saturation of LTP [148], and CA1-specific deletion of the NR1 subunit of the NMDA receptor [149]. However, rats pretrained in certain ways exhibit little or no impairment in incremental learning of a spatial reference memory task after LTP induction is limited by pharmacological means [150, 151] or electrophysiologically [152]. The same pretraining procedures do not benefit rats with hippocampal lesions [150]. However, one-trial spatial matching-to-place in the watermaze remains very severely impaired by intrahippocampal D-AP5 infusion, despite an extended period of pretraining prior to the start of drug infusions, suggesting that synaptic plasticity might only be absolutely necessary when information must be acquired rapidly [63]. A more recent study employed a delayed non-matching-to-place protocol in a radial maze, in which a rat had to choose between a previously visited arm, and an unvisited one [147]. AP5 infusions targeting CA3 had no effect on performance in a familiar spatial environment, but were highly disruptive in a novel environment. Although there are many differences in detail between the data of Lee and Kesner [147] and Steele and Morris [63], both sets of findings are consistent with a role for CA3 in the rapid acquisition of spatial information.

A similar selectivity for rapid learning has since been obtained using a variety of gene targeting approaches. For example, mice with a deletion of the gene coding for the GluR-A subunit of the AMPA receptor exhibit impaired Schaffer collateral-CA1 (LTP), but no deficit in spatial reference memory [153-156]. This is true even in the absence of extensive pretraining, perhaps reflecting a milder impact of the manipulation compared to hippocampus-wide pharmacological blockade or genetic deletion of the NMDA receptor – although the selectivity of the manipulation for plasticity at Schaffer collateral synapses versus other populations has not been determined. But robust impairments are obtained in tests of spatial working memory, such as non-matching-to-place in a T-maze [154, 155, 157]. Deficits are also found in a task that requires spatiotemporally discontiguous events to be associated [158]. The reduction in LTP and the working memory impairment can be rescued by the addition of a forebrain-specific GluR-A expression system to the knockout mice [159]. However, this story is complicated by the finding that theta-burst stimulation – an arguably more physiologically realistic pattern of stimulation than a 'conventional' tetanus – can induce LTP even in the absence of GluR-A.

Despite the frequent focus on LTP-like increases in synaptic efficacy, it is possible that long-term depression (LTD)- or depotentiation-like decreases in synaptic strength are just as important as synaptic potentiation, particularly when old, irrelevant information must be forgotten, and new information quickly added. Exposure to a novel environment, for example, can reverse existing LTP [160] and facilitate the induction of LTD [161] see also ref. 133]. Mice with a forebrain-specific calcineurin knockout exhibit a substantial deficit in Schaffer collateral LTD, but normal, or slightly enhanced LTP [162]. These mice are unimpaired on a watermaze reference memory task, but perform very poorly on a matching-to-place version of the task. Performance in the spatial working memory version of the 8-arm radial maze is also impaired. These results support the idea that bidirectional synaptic plasticity is critical for spatial working memory, but the possible effects of enhanced LTP – a phenomenon with an uncertain relationship to memory [for example, see refs. 163, 164] - should also be considered.

More recent work has taken these ideas even further, employing genetic techniques to target very specific components of the hippocampal circuitry. Nakazawa and colleagues created a conditional knockout mouse with a CA3-specific deletion of the gene coding for the NR1 subunit of the NMDA receptor; as expected, LTP at CA3 recurrent collateral synapses was impaired [165]. Nonetheless, these mice were able to learn a spatial reference memory version of the watermaze task over repeated trials (see 'The role of pattern completion in memory retrieval'). However, subsequent testing revealed that watermaze DMP performance was substantially impaired in knockout animals, but no deficit was evident if a platform location was repeated [166]. This is consistent with the idea that plasticity in the recurrent network of CA3 is critical for the rapid encoding of novel place information, although a role for NMDA receptor-dependent plasticity in other populations of CA3 synapses cannot yet be ruled out. A subsequent analysis of the placespecific firing of CA1 pyramidal neurons revealed the formation of normal place fields in familiar surroundings, but place fields were more broadly tuned upon initial exposure to a novel area of the testing environment.

The simplest explanation for all of the above findings is that synaptic plasticity in specific pathways (e.g., CA3-CA3, CA3-CA1, and probably others) is critical


for the encoding of information in a trial-unique manner. When this plasticity is abolished, one-trial place learning is impossible, but other mechanisms are sufficient to support incremental learning. However, the build-up of proactive interference as successive platform locations are introduced is an additional factor that distinguishes matching-to-place from reference memory tasks. Accordingly, plasticity-dependent mechanisms might be critical in some way for remembering the location experienced most recently, rather than the many now incorrect locations encountered on previous days [see ref. 167]. As we have discussed, it is attractive to assign a key role to both increases and decreases in synaptic strength under these circumstances.

Dissociating memory retrieval from encoding processes: the role of AMPA and NMDA receptors

In much of the work discussed in the previous section, it is difficult to dissociate the impact of a manipulation on memory encoding versus retrieval. However, several studies have attempted to address this issue. Early work indicated that blockade of hippocampal NMDA receptors with AP5 has no effect on the retention of previously learned place information [63, 126, 168, 169]. These findings have recently been confirmed in a one-trial dry-land version of the matching-to-place task, in which rats search for food buried in recessed sand-wells (Fig. 4A); as expected, performance at a 20-min delay was impaired by AP5 infusion prior to the encoding trial [170] (see Fig. 4B). Similar results were obtained in a flavor-place paired associate task in the same apparatus [171]. However, performance in both studies was unaffected by NMDA receptor blockade prior to a retention test (see Fig. 4B). In other words, once formed, the retrieval of an existing memory does not require further NMDA receptor activation. The retrieval of a recently formed memory is, however, dependent on hippocampal activity: blockade of hippocampal AMPA receptors before retention testing brought performance close to chance levels [66, 171] (see Fig. 4C). Hippocampal lesions made before retrieval have a similar impact in a spatial reference memory task [50].

The role of pattern completion in memory retrieval

Speculation concerning the mechanisms of memory retrieval has often centered on the process of pattern completion [see ref. 79]. The idea is that specific synapses within a recurrent network (e.g., CA3) undergo NMDA receptor-dependent changes in synaptic strength that collectively comprise a memory trace. Once established, these changes can be read out during retrieval without the need for further NMDA

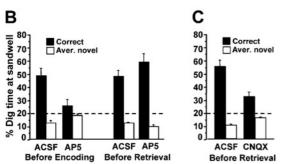


Figure 4. Memory encoding and retrieval. Hippocampal NMDA receptor activation is necessary for the encoding, but not retrieval, of one-trial place memory in a dry-land, arena-based task. Retrieval is, however, impaired by AMPA receptor blockade. (A) The open-field event arena comprises a grid of recessed sandwells, covered with sawdust. In the encoding phase of a spatial matching-to-place task (lefthand panel), the rat must search for a food pellet located in a single, open well. In the retrieval phase (righthand panel), the rat must locate the previously rewarded well in order to collect another reward. Four additional unrewarded wells are also open during this phase. Encoding and retrieval phases are conducted in a single day, 20 min apart, and the location of the rewarded well is always changed between days. The task is therefore analogous to trials 1 and 2 of the watermaze matchingto-place task (see Box 2 and Fig. 2). (B, C) Once the task had been learned, occasional probe trials were conducted in which no reward was available during the retrieval phase. On these occasions, rats were given intrahippocampal infusions 15 min prior to encoding or retrieval via chronically implanted cannulae. Graphs indicate the percentage time spent digging in the correct sand-well versus the average time spent digging in the four incorrect wells. Infusion of D-AP5 (30 mM; 1 µl/side) 15 min before the encoding trial resulted in a severe memory impairment, relative to aCSF-infused controls; but AP5 infusion prior to retrieval had no effect (B). In contrast to AP5, the AMPA antagonist CNQX (3mM; 1 µl/side) disrupted memory when infused 15 min before retrieval (C). [Figure reprinted with permission from ref. 170; copyright 2005, the Society for Neuroscience.]

receptor activation – hence the absence of an effect of AP5 on retention. (But although synaptic changes may not be necessary for memory retrieval, it is likely that such changes do normally occur [see refs. 172, 173 and Box 4].) Importantly, the existence of extensive recurrent connections between different cells of the network allows a complete output pattern to be reconstructed from a partial or degraded input, a feature that might be critical in many real-world situations.

Experimental evidence for such a process was recently obtained using mice with a CA3-specific knockout of the gene encoding the NR1 subunit of the NMDA receptor [165] (see also 'Synaptic plasticity and the rapid encoding of spatial information'). After training in a standard watermaze reference memory task, knockout mice were able to remember the location of a hidden platform during a probe trial when all distal cues were present; but when only a subset of cues was presented, the mutant mice were markedly impaired. These findings suggest that NMDA receptors at recurrent CA3 synapses are necessary for the encoding of memory traces in such a way that pattern completion can occur during retrieval. Behavioral data consistent with those of Nakazawa et al. [165] have recently been reported in an analogous dry-land task in which rats learned to locate a food reward hidden in a sand-well on the basis of four extra-maze cues [174]. Following neurotoxic lesions of area CA3, rats were given probe trials with a variable number of cues removed. Cue removal had only minor effects in normal rats, but performance declined steeply in lesioned animals, consistent with impaired pattern completion [see also ref. 175].

A recent comparison of the firing properties of CA3 and CA1 has provided further support for the pattern completion hypothesis. Lee et al. [176] recorded place fields as rats ran around a circular track. In this case, comparisons were made following changes to the environment made by rotation of proximal and distal cue sets in opposite directions. Most CA1 neurons exhibited a remapping as the mismatch increased, but CA3 place fields tended to retain their coherence consistent with a pattern completion operation, perhaps serving to identify the environment as the same despite changes in the relationships between cue sets. In contrast to these findings, Leutgeb et al. [177] presented evidence for the opposite process of pattern separation in CA3. Instead of manipulating cues within a single environment, they recorded the firing of CA3 and CA1 neurons in separate environments whose geometrical similarity could be varied by moving the walls of the enclosures. In CA1, there was substantial overlap between active neuronal populations in different environments, and the degree of overlap grew larger with increasing environmental similarity. In CA3, however, very little overlap was observed between the subsets of cells activated in each environment, even when the enclosures were identical. It was suggested that this orthogonalized representation may help to reduce interference and maintain distinct representations of similar but distinct environments.

A possible resolution of the apparent discrepancies between the two studies has been presented, based on a hypothesized non-linear transformation of input patterns as the change in an environment increases [178]. In other words, CA3 responds to small environmental alterations with pattern completion, but shifts to pattern separation mode when differences become larger, or if different environments are employed. This interpretation draws on an immediate early gene activation imaging study in which changes were made either to a single environment or two different environments [179]. The predicted pattern of neuronal activity was observed: small environmental changes resulted in overlapping activity patterns, but larger changes caused a shift toward a non-overlapping pattern of activity. Findings such as these might have important implications for our understanding of the role of the hippocampus in the contextspecific retrieval of memory [see refs. 26, 27].

Nevertheless, the story is far from complete. First, the role of CA3 versus upstream processing in the dentate gyrus - a structure traditionally associated with pattern separation - remains unknown. Second, it is difficult to see how information processed by the dentate-CA3 network can leave the hippocampus if similar information is not represented in CA1. Interestingly, in contrast to the earlier findings [see also refs. 180], a recent study has reported both pattern separation and pattern completion in the firing patterns of CA1 neurons: cells exhibited an abrupt shift in their representations as a square arena was 'morphed' into a circular one, with intermediate shapes presented in semi-random order [181], a finding that is consistent with the suggestions made by Guzowski et al. [178] concerning CA3. But a continuous remapping has also been observed when one environment is gradually morphed into another, suggesting that an incremental coding of environmental changes can also occur [182]. A further complexity - perhaps relevant to this apparent discrepancy – is introduced by the observation that two separate indices, the place-specific firing characteristics of neurons and their firing rate [see refs.183], can exhibit independent remapping in CA3 [184]. For further discussion of these issues, see refs. [185, 186].

Theories of memory retrieval versus encoding

Rather than simply transforming a pattern of inputs, it has been suggested that the hippocampus might exhibit distinct encoding and retrieval 'modes' and/ or that distinct neural mechanisms are engaged during the two processes. One suggestion is that the direct cortical input to the CA subregions and the intrinsic hippocampal circuitry play distinct roles in encoding and retrieval processes [89, 92, 187]. For instance, based on physiological data, it has been proposed that the hippocampal theta rhythm serves to separate

encoding from retrieval, with encoding occurring at the troughs of the rhythm (recorded at the hippocampal fissure) and retrieval occurring at the peaks [188]. This model is inspired, in part, by evidence that the direct cortical input to CA3 and CA1 is strongest at theta troughs, perhaps providing a 'teaching signal'; conversely, intrahippocampal pathways, and the output to entorhinal cortex – perhaps conveying stored information – predominate at the peaks of the rhythm [189].

Other models make somewhat different predictions about the role of the direct cortical input. There is evidence, for example, that dopamine selectively depresses the perforant path input to CA1; the activation of dopaminergic projections from the VTA might inhibit this input when novel information is received, while facilitating plasticity at CA3-CA1 synapses [92; see also ref. 94 and 'Cellular consolidation' below]. Thus, dopamine might provide a signal that instructs the hippocampus to enter a transient encoding state. Conversely, there is considerable experimental evidence that activation of the noradrenergic system can facilitate memory retrieval [172, 190, 191]. Alternative possibilities include the idea that acetylcholine provides the novelty signal that switches the hippocampus from retrieval to encoding modes [192, 193]. Others have suggested that inhibitory interneurons might control this switching function [194]. Although many of these ideas are very preliminary, there is enormous scope for the parallel development of computational and empirical approaches to hippocampal function. Aided by the increasing selectivity of the tools available for disrupting and monitoring the functions of specific components of the hippocampal network, the work described in this section is beginning to close the gap between neuroanatomy and function, bringing us gradually closer to a circuit-level description of hippocampal operations.

Memory retrieval: beyond the hippocampus

A degree of caution is appropriate at this point: we should not assume that memory retrieval is a solely intrahippocampal process acting on memory traces located within the structure. In fact, successful retrieval involves the conjoint activation of multiple brain regions, including the prefrontal cortex [195–198]; neuromodulatory and endocrine systems also play key regulatory roles, [172, 190, 199–202]. Moreover, it is generally thought that the neocortex is the final site of long-term storage for many kinds of information. A major function of the hippocampus is thought to be the 'binding' of memory traces stored in the cortex into a coherent representation: after a process of memory consolidation, this representation

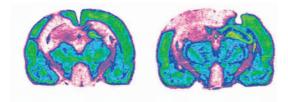
can be retrieved without hippocampal involvement. These ideas are considered in detail in 'Memory consolidation' below.

Memory consolidation

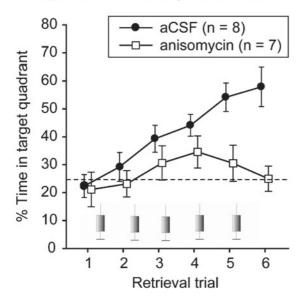
Introduction

It has been suggested that the hippocampus records a continuous transcript of attended events [203]. If so, there must be mechanisms for selecting those memory traces that are worthy of long-term storage, while discarding the rest. Entry into long-term storage is likely to be gated in many ways at different levels of organization - relevant factors might include the motivational significance of the memory (or of other events occurring shortly before or after [204]), its compatibility with existing semantic knowledge structures [205], and the amount of reminding and rehearsal that occurs after learning. At the neuronal level, the stabilization of selected memory traces is thought to be mediated by a range of consolidation processes, involving many different substrates and operating over differing timescales [206]. These processes are sometimes divided into interdependent 'cellular' and 'systems' components [207]. The former is thought to encompass a range of local intracellular events – occurring over a period of several hours – that lead to the formation of stable changes in synaptic connectivity and/or neuronal excitability. The latter refers to a postulated systems-level reorganization of the memory trace that involves interactions between brain structures and the extensive refinement and remodeling of patterns of synaptic weight changes. This process may take days, weeks, or even years in humans [208], although an extended time course should not necessarily be regarded as a defining feature of this form of consolidation.

Cellular consolidation


The role of NMDA receptors and downstream signaling pathways. It is generally thought that long-term memory formation requires both hippocampal and neocortical activity and synaptic plasticity during initial encoding, followed by local 'cellular' consolidation processes within these two structures [see ref. 209 for review] – although research to date has focused largely on the hippocampal side of the story. Consistent with this, the long-term retention of place memory (i.e., >24 h) is impaired by the blockade of NMDA receptor-dependent synaptic plasticity either before (see 'Synaptic plasticity and the rapid encoding of spatial information'), or soon after, acquisition [210, 211]. The latter finding suggests that the early

stabilization of a memory requires additional 'offline' episodes of NMDA receptor activation after the initial encoding event [see also refs. 212, 213]. Such findings may account for the reduced long-term stability of CA1 place fields observed after NMDA receptor blockade [214]. In contrast, as discussed above, short-term spatial memory (e.g., with a 20-min acquisition-retention interval) is unaffected by post-training NMDA receptor blockade, despite a marked impact of blockade during acquisition [170]. Taken together, these findings suggest that NMDA receptor activation makes distinct but complementary contributions both to the encoding, and the early stabilization, of memory.


However, the existence of cellular consolidation processes is most commonly inferred from the consequences of interventions targeting processes downstream of the NMDA receptor. Sensitivity to inhibitors of macromolecular synthesis [204, 207, 215] (Fig. 5) is often regarded as a defining feature of cellular consolidation, but a large number of other interventions can interfere with the consolidation of hippocampus-dependent memory in the minutes to hours after its formation. The list - by no means an exhaustive one – includes disrupting the activity of a range of protein kinases [216, 217], such as CaMKII [218], MAPK/ERK [219–222], tyrosine kinases [223], PKA [224], and PKC [225]; other manipulations include the inactivation of CREB [226-232], the deletion or disruption of the expression of certain genes, such as those coding for Zif268 [233, 234], Arc [235], or BDNF [236], temporary neuronal inactivation [75, 237, 238], and interference with cell adhesion processes [239–241]. There is also growing interest in the possibility that epigenetic mechanisms – such as DNA methylation and histone modification – might play a critical role in information consolidation and storage at the cellular level [see ref. 242 for review].

Late-LTP and synaptic tagging. The induction of late LTP (lasting > 4 h) is sensitive to a similar range of interventions to those that impair long-term memory formation, consistent with the idea that lasting changes in synaptic efficacy underlie lasting memories. For example, the inhibition of protein synthesis has a minimal effect on LTP in the first hour or more following its induction, but little potentiation persists after 4-6 h [see ref. 204 for review]. Paradoxically, protein synthesis need not be initiated at the same time as the induction of LTP. For example, strong tetanization of the Schaffer collateral input to CA1 in the presence of the protein synthesis inhibitor anisomycin normally results in a transient early LTP. But if drug infusion and LTP induction are preceded by strong tetanization of an independent input to the

A Extent of protein synthesis inhibition

B Impairment of memory consolidation

Figure 5. Inhibition of protein synthesis and cellular consolidation. (A) Unilateral infusion of anisomycin into the dorsal hippocampus results in a local reduction in protein synthesis. Autoradiographic images from two different rats are shown. Inhibition of protein synthesis is indicated by a reduction in the uptake and incorporation of [14C]L-leucine (white areas). (B) Bilateral post-training infusion of anisomycin (250 mg in 2 ml per side) into the dorsal hippocampus impaired memory consolidation in a watermaze reference memory task. Rats were trained over 6 days, with four trials/day, to find a hidden platform in a fixed location. The first trial of each day was a 'rewarded' probe in which the platform was made available after 60 s, providing repeated measures of 24-h memory retention. Anisomycin or aCSF was infused immediately after the end of each daily testing session. The percentage time spent in the training quadrant during the first 60 s of each daily probe trial is plotted. Rats that received anisomycin were never able to retain a spatial memory over the 24-h period between testing sessions, indicating a disruption of memory consolidation. [Figure reprinted with permission from ref. 304; copyright 2006, Elsevier.]

same population of neurons, a stable, late LTP is induced [243]. These and subsequent findings suggest that a high-frequency tetanus sets synaptic 'tags' that enable the sequestration of plasticity proteins that are currently available owing to past activity, or those that become available in the near future [204, 243, 244]. In fact, if proteins are scarce, a competitive interaction can be observed between tagged synapses [245].

Under normal circumstances, the activity of neuromodulators such as dopamine in CA1, norepinephrine in the dentate gyrus, or stress hormones, may be a critical factor in regulating protein availability (see below).

During memory formation, a dual requirement for protein synthesis and tag setting provides a plausible mechanism for the interaction of diffuse neuromodulatory signals – indicating, for example, novelty, reward, or punishment – with specific patterns of synaptic weight changes; the former might lead to a widespread upregulation of protein synthesis [246], and the latter might set synaptic tags that reflect the encoding of ongoing experience. Such a scheme might explain the facilitation of memory often observed for the incidental details surrounding emotionally significant events, and the related phenomenon of 'flashbulb memory' [203, 204].

The role of dopamine. There is increasing interest in the idea that the activation of dopaminergic inputs might provide the diffuse trigger required by the above model, particularly in CA1. The firing of dopaminergic neurons in the VTA has been linked to the prediction of motivationally significant events and reward, and to the occurrence of novel events and stimuli [see refs. 94, 247 for reviews]. This information is potentially available to the hippocampus: CA1, for example, receives dopaminergic projections from the VTA that terminate predominately within the stratum lacunosum moleculare [248]. Consistent with a role in upregulating protein synthesis, dopamine D1/D5 receptors are positively coupled to the cAMP/PKA cascade that activates MAPK and CREB [223, 249]. However, the possibility of a MAPK-mediated upregulation of translation – perhaps in dendrites – should not be overlooked [221]. In fact, the activation of D1/ D5 receptors can stimulate the translation of local dendritic mRNAs [250], a process that is sometimes sufficient for the induction of persistent LTP [251, 252].

There is good evidence that dopaminergic activity modulates the persistence of LTP. Strong tetanization of the Schaffer collaterals causes dopamine release in the hippocampal slice preparation [253], and the blockade or knockout of dopamine D1/D5 receptors impairs late LTP in CA1 [253–258] – although modest effects on early LTP are also often observed. Conversely, dopamine agonists can enhance the magnitude and persistence of CA1 LTP [257, 259, 260]. Consistent with the proposed role of dopamine in stimulating protein synthesis, tagging experiments have the same outcome if a dopamine receptor antagonist is substituted for anisomycin: strong tetanization of one input can rescue L-LTP in an

independent input that has been tetanized in the presence of SCH23390 [261]. In fact, the activation of dopamine receptors can sometimes induce a slowonset late LTP in the absence of early LTP [204, 255, 262]. An enhancement of LTP is also observed following the exposure of a rat to novelty [263–265], an effect that is dependent on the activation of D1/D5 receptors [263, 265]. Unit recording data are consistent with these effects of dopaminergic manipulations on synaptic plasticity. For example, the long-term stability of CA1 place fields is increased when the behavioral significance of environmental cues is increased. This effect can be mimicked by the systemic administration of a dopamine agonist, and stability can be reduced by the administration of an antagonist [266], although dopaminergic actions outside the hippocampus may also play an important role. A similar reduction in long-term place field stability is seen after inhibition of protein synthesis [267].

The manipulation of dopaminergic activity can also have corresponding effects on memory. Post-training administration of dopamine agonists has been reported to enhance memory in both spatial [260, 268] and non-spatial tasks [269]. Conversely, treatments that decrease hippocampal dopaminergic activity impair memory [226, 270]. In the watermaze, intrahippocampal infusion of the D1/5 antagonist SCH23390 impairs the retention of one-trial place memory in the watermaze at a 6-h interval, but has no effect on retention after 20 min [271] (Fig. 6). This time course is consistent with the effects of dopaminergic interventions on the persistence of LTP and place field stability discussed above. It is tempting to speculate that the firing of dopaminergic neurons in response to the reward or novelty of locating an escape platform in a new location leads to an upregulation of hippocampal protein synthesis, and the subsequent stabilization of synaptic changes 'tagged' by glutamatergic stimulation. In the presence of a D1/D5 receptor antagonist, the initiation of this cellular consolidation process would be disrupted, leading to a selective loss of longterm memory.

The role of norepinephrine. Dopamine is not the only neuromodulator implicated in both synaptic plasticity and memory. Norepinephrine, for example, acts on beta-adrenergic receptors that are coupled to the same cAMP-PKA cascade that is activated by dopamine D1/D5 receptor stimulation. And the hippocampus receives a noradrenergic projection from the locus coeruleus, whose neurons, like those of the VTA, can respond to novelty [272; see ref. 273 for review]. There is considerable evidence that beta-adrenergic manipulations can modulate early LTP in several hippocampal pathways [257, 274–279]. Moreover,

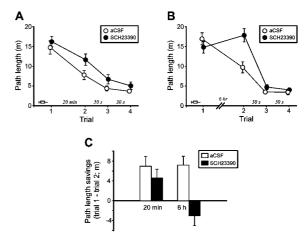


Figure 6. Dopamine receptor activation as a trigger for cellular consolidation. Blockade of dopamine D1/D5 receptors during learning impairs the formation of long-term but not short-term, memory, suggesting that dopamine receptor activation provides a trigger for the initiation of cellular consolidation. Rats with chronically implanted intrahippocampal infusion cannulae were pretrained for 8 days in a matching-to-place version of the watermaze task (see Fig. 2 and Box 2), after which a further 8 days of training were conducted. Prior to trial 1 of each training day, rats received a bilateral intrahippocampal infusion of SCH-23390 (5 μg in 1 μl per side) or aCSF. The interval between trial 1 and 2 was either 20 min or 6 h. Both drug condition and interval were varied in a counterbalanced within-subjects manner. The mean distance traveled in order to find the platform during training is plotted in A and B. Both drug- and vehicle-treated groups showed a marked improvement between trials 1 and 2 at the 20-min ITI (A), but drug-treated rats failed to remember the platform location at the 6h ITI (B). An analysis of the difference between path lengths on trials 1 and 2 (savings) confirms this picture - the drug-treated condition exhibits a marked impairment only at the 6-h ITI (C). [Data adapted from ref. 271 with permission from the authors.]

activation of the locus coeruleus causes a slow-onset dentate LTP in vivo [280], and the application of adrenergic agonists can result in the conversion of early LTP to protein synthesis-dependent late LTP in CA1 in vitro [281], and in the dentate gyrus of freely moving rats [282, 283], an effect that is mimicked by exposure to a novel environment [284]. Reminiscent of heterosynaptic rescue and synaptic tagging in CA1 in vitro, these findings are consistent with an earlier report that water reward given after weak tetanization can rescue decaying dentate potentiation, leading to stable late LTP [285]. In both the Straube et al. [284] and Seidenbecher et al. [285] studies, the rescue effect was blocked by the application of propranolol, a betaadrenergic antagonist. However, the importance of intrahippocampal beta-adrenergic mechanisms in these phenomena remains uncertain: the modulation of hippocampal plasticity and memory in the intact animal is also thought to depend critically on the activation of beta-adrenergic receptors within the amygdala.

In support of the latter view, there is a wealth of evidence that the amygdala facilitates memory for emotionally arousing experiences or material [237, 286–289]. Although severe stress is detrimental to memory [290], moderate concentrations of stress hormones such as glucocorticoids within the hippocampus can facilitate memory – an action that depends on noradrenergic activation of the basolateral amygdala [see refs 291, 292 for reviews]. Moreover, post-training infusion of norepinephrine into the basolateral amygdala can enhance the long-term retention of watermaze spatial reference memory, whereas memory is impaired by the infusion of propranolol [293]. Consistent with these findings, the amygdala enjoys extensive connectivity with the hippocampus and entorhinal cortex [294, 295], and the activation of inputs from the lateral amygdala can

facilitate the spread of neural activity from the perirhinal cortex to the entorhinal cortex and hippocampal formation [296]. Moreover, stimulation of the basolateral amygdala can facilitate the induction of dentate early LTP under some circumstances [297–301], and can convert early LTP into protein-synthesis-dependent late LTP [299]. The latter phenomenon is observed following BLA stimulation within a specific time window either before or after tetanization of the perforant path, and is blocked by propranolol. The authors speculate that a 'motivation' or 'arousal' signal from the basolateral amygdala can interact with synapse-specific tags in the hippocampus, resulting in the stabilization of an otherwise decaying memory trace.

Box 4: Reconsolidation

Until recently, the prevailing view was that memory traces become stabilized after a single episode of cellular consolidation that occurs over a period of hours to days following encoding. Despite this, over the past few decades, there have been occasional reports that reactivated memories could become newly vulnerable to some of the same treatments that interfere with the initial consolidation process – results that imply the existence of 'reconsolidation' processes [see ref. 172 for review]. A recent revival of interest in reconsolidation began with the finding that infusion of anisomycin (an inhibitor of protein synthesis) into the lateral amygdala could disrupt a consolidated auditory fear memory, but only if drug administration was preceded by re-exposure to the conditioning tone – in other words if the memory was first reactivated [303]. Since then, similar phenomena have been documented in many brain areas, in many different species, and for a variety of behavioral tasks, including the watermaze [304, 305; for reviews, see refs. 306, 307]. A current focus of interest is whether reconsolidation is simply a recapitulation of consolidation, or whether distinct mechanisms are involved in the two phenomena. Although the cellular mechanisms of reconsolidation overlap with those of consolidation [302], some important dissociations have been observed [236; see ref. 308 for a review]. But despite a growing research effort, a number of problems remain unresolved [see for example ref. 309]. One such issue concerns the occasional reports that the amnesia following memory reactivation is sometimes temporary, implying a failure of memory retrieval rather than storage [310, 311]. However, it is worth noting that this storage verses retrieval debate was never entirely resolved for 'conventional' consolidation either. Nonetheless, when one considers work

from humans, monkeys, rodents, and the invertebrate, where neurons and synapses can be examined and related to behavior, a compelling case can be made for storage impairment as the root of long-term memory loss [see ref. 312 for a review]. In addition to cellular processes, systems-level examples of reconsolidation have also been reported. Remote contextual fear memory can become independent of the hippocampal formation, but re-exposure to the conditioning context can sometimes render the memory newly vulnerable to protein synthesis inhibitors or hippocampal lesions [313, 314]. However, such effects are not always observed [315], and the issue has not yet been fully resolved [see ref. 316 for discussion]. Some commentators have suggested that systems-level consolidation might simply reflect the cumulative effects of multiple rounds of cellular reconsolidation during the 'offline' reactivation of cortico-hippocampal memory traces – a process that might occur by reminding or rehearsal during wakefulness, and/or during sleep [308, 310, 317]. This position is reminiscent of the 'multiple trace' hypothesis of systems-level memory consolidation [318], in which each reactivation of a memory generates a new trace, or a new component of the trace. In support of this view, the vulnerability of reactivated memory to protein synthesis inhibitors is sometimes found to decline as a function of the strength and/or age of the memory [319–321], suggesting that very strong, or old and well-established traces do not always undergo reconsolidation. Despite these controversies, the resurgence of research into the reconsolidation phenomenon has brought new vigor to the memory consolidation field and continues to drive new insights into the processes that stabilize memory.

415

Summary. As we have discussed, the activity of neuromodulatory inputs, and interactions between the hippocampus and other brain structures, can determine the fate of recently induced synaptic changes and newly formed memories in the hours and days following their formation - a scenario that perhaps challenges the term 'cellular' consolidation. Nonetheless, once changes in synaptic efficacy have become stabilized, there is still no guarantee that the resulting memory trace will persist indefinitely; the entry of memory into very long-term storage is further gated by the higher-order process of systems consolidation discussed in the following section. Moreover, the idea that cellular and systems consolidation have clearly defined end-points has been increasingly questioned in recent years with the resurgence of interest in 'reconsolidation' processes: the reactivation of established and presumably consolidated memories sometimes renders them newly vulnerable to certain interventions, some of which also impair consolidation (see Box 4). Nonetheless, reconsolidation, despite its name, is not simply a faithful repeat of the consolidation process, and notable differences are observed between the two phenomena [236, 302].

Systems consolidation

Introduction. Despite the vast body of evidence documenting the critical role of the hippocampus in the rapid encoding of memory, long-term information storage may not always depend on the structure. Via its projections to various cortical areas, the hippocampus is thought to facilitate the gradual off-line development of intracortical connections, perhaps through mechanisms similar to LTP and LTD. According to the 'standard model' of memory consolidation, this process, sometimes known as 'systems' consolidation [207], eventually confers self-sufficiency on the cortical memory trace. Several models emphasize the possibility that the hippocampus encodes 'indices' or 'pointers' that temporarily link activity in relevant neocortical areas until new intracortical connections are established [322-324]. Computational considerations also support a dual-systems view of memory formation and storage. Marr [80, 325] proposed that the hippocampus rapidly encodes ongoing events, before passing the information on to the neocortex for categorization and long-term storage. Subsequent models have emphasized the utility of having a hippocampal system for the rapid encoding of ongoing experience, and a cortical system that slowly integrates this information with existing knowledge structures [326, 327]; this arrangement might overcome the problem of "catastrophic interference" that plagues certain connectionist networks - unless two sets of patterns are presented in an interleaved fashion, training with the second set will often cause 'forgetting' of the first set [for a review, see ref. 328; but see also ref. 329].

Evidence for the standard model of memory consolidation.

1) The role of the hippocampus

Consistent with the idea that the hippocampus is a temporary storage device, damage to the temporal lobes or hippocampus in humans and animals often results in a preferential impairment of recently acquired memory, with sparing of remote memory acquired long before the intervention [330, 331]. This pattern of memory loss is known as temporally graded retrograde amnesia, or a 'Ribot' gradient - named after the author of the first detailed account of the phenomenon in humans [332]. The phenomenon has been observed in a wide range of behavioral tasks in rodents and rabbits, including contextual fear conditioning [333–335], social transmission of food preference [336-339], visual discrimination [340], trace eyeblink conditioning [341, 342], and some tests of spatial memory [343, 344; but see 'Remaining issues concerning theories of memory consolidation' below]. Consistent with these findings, the use of a range of pharmacological interventions, including AMPA receptor blockade, confirms the temporally limited role of the hippocampus in memory for inhibitory avoidance, and the growing importance of cortical regions with the passage of time [128, 345]. The evidence from intervention studies is complemented by functional imaging data in rodents indicating that, as predicted, the hippocampus is engaged during the recall of recently acquired contextual, spatial, or non-spatial memory, but is less active during the recall of remote information learned several weeks earlier [339, 346 - 349].

Evidence that an extended period of hippocampal activity is critical for the consolidation process is provided by studies in which the hippocampus is reversibly inactivated after training [128, 350]. In the study by Riedel et al. [350], rats received a week-long intrahippocampal infusion of an AMPA receptor antagonist starting 1 or 5 days after training in a watermaze reference memory task; when subsequently tested in the drug-free state, rats were unable to remember the previously learned location, but new spatial learning was unaffected. However, the possibility remains that inactivation simply disrupts hippocampal information storage, rather than the corticohippocampal interactions involved in the formation of a stable neocortical trace.

As an alternative to blocking AMPA-receptor-mediated transmission, some studies have investigated the role of NMDA-receptor-dependent synaptic plasticity in systems consolidation. Shimizu et al. [351] created mice with an inducible, CA1-specific knockout of the NR1 subunit of the NMDA receptor. Reversible deletion of this subunit for a 1-week period after training in a watermaze reference memory task significantly impaired subsequent retention. However, chronic pharmacological blockade of NMDA receptors for a comparable period had no effect in a similar task [352; for discussion of this discrepancy, see refs. 146, 353, 354]. In fact, an enhancement of memory retention has been reported following chronic, post-training NMDA receptor blockade, perhaps owing to a reduction in the retroactive interference that might normally occur after learning as a result of NMDA receptor activation during ongoing experience [355].

2) The role of the neocortex

Our understanding of the cortical mechanisms involved in memory consolidation, and the storage and retrieval of remote memories, is still at a very early stage - partly because of the difficulty in selecting the right area of cortex to study. But important clues are beginning to emerge. Recent evidence suggests that mice with a heterozygous null mutation of alpha-CaMKII exhibit normal CA1 LTP, but potentiation in slices of temporal cortex rapidly decays back to baseline values [356]. Consistent with these findings, place memory in the watermaze is normal 3 days after training, but forgetting occurs far more rapidly than in wild-type controls, approaching chance levels after 10 days or more. In other words, impaired cortical function can result in a selective deficit in remote memory, with a complete sparing of recent memory – an inverse Ribot gradient - consistent with the idea that the hippocampus only supports memory for a limited period of time, until cortical mechanisms take over.

In fact, studies of metabolic activity and immediate early gene activation in mice have revealed that a network of cortical regions, including executive regions of the limbic neocortex (including anterior cingulate, infralimbic, and prelimbic areas) is engaged by the retrieval of remote, but not recent, spatial memory [331, 347, 348, 357, 358; see ref. 331 for a review]. Interestingly, a marker for synaptogenesis, GAP-43, was elevated in the anterior cingulate cortex a few weeks after spatial training or contextual fear conditioning [347]. Further clues regarding the cellular mechanisms of memory consolidation were provided by a laminar analysis of cortical activity. Comparison of Zif-268 activity following the retrieval of recent and remote memory revealed a shift in expression from deep to superficial layers of the

parietal cortex with the passage of time [347]. As most intra-cortical projections arise from – and terminate within - the superficial layers, the finding is consistent with the development of intracortical connections that is postulated to occur as consolidation proceeds. Evidence that these brain areas are not only activated by the retrieval of remote memory, but are also necessary for the process, has also been reported; inactivation of the anterior cingulate cortex with lidocaine caused a severe impairment in remote memory for the baited arm of a five-arm radial maze, but had no effect on the retention of recent memory [347]. Conversely, hippocampal inactivation disrupted only recent memory. Similar results have recently been obtained for spatial reference memory in the watermaze except that hippocampal inactivation disrupted recent and remote memory [358].

At face value, the double dissociations between hippocampal and cortical roles reported in the above studies are puzzling. Most versions of consolidation theory hold that the hippocampus and neocortex act in concert during the initial encoding and storage of memory. But it is possible that the cortical regions identified in these studies are not sites of memory encoding and storage per se, but executive areas responsible for the integration of consolidated neocortical traces distributed across a number of brain areas – a function initially dependent on the hippocampus. It remains possible that continuing intracortical consolidation processes, operating over an even longer time scale, might, in turn, relieve these areas of their integrative role [see ref. 331 for discussion]. Alternatively, the reduction in hippocampal activity over time might reflect forgetting or the loss of 'episodic' detail [359]. Conversely, increased prefrontal activity during remote memory retrieval might simply indicate a greater dependence on effortful processes for the retrieval of a distant weak memory compared to a recent strong memory [360]. As Rudy et al. [360] point out, this hypothesis is consistent with data from a recent human imaging study in which activity in the anterior cingulate cortex (ACC) was negatively correlated with hippocampal activity during the retrieval of a weak visual association [361]. This suggests that the ACC may be preferentially engaged when memory trace strength is low. The potential confounding of memory strength with age in consolidation studies has not yet been addressed.

3) Sleep and memory consolidation

Systems memory consolidation is often portrayed as a gradual process of stabilization that, once started, simply requires the passage of sufficient time to reach completion. However, the formation of a lasting

memory is likely to be a far more dynamic process, with continuous remodeling of patterns of cortico-hippocampal synaptic weights [362], as newly acquired information is incorporated into existing memory frameworks. This process may depend on multiple episodes of reminding during wakefulness, and/or the replay of encoding-related activity during sleep – an idea with growing experimental support [363]. Building on earlier work [364], it was discovered that place cells that tended to fire together during exploration of an environment exhibited similarly correlated firing during subsequent slow-wave sleep [365]. This reactivation occurred preferentially during high-frequency network oscillations known as 'ripples' (see below).

Subsequent evidence pointed to the replay of temporal sequences of unit activity during sleep. For example, the temporal order of CA1 pyramidal cell firing during behavior is found to be preserved during sleep [366]. A similar preservation of temporal correlations during sleep has been observed in simultaneous recording from CA1 and posterior parietal cortex [367]. There is recent evidence that sequences of place cell firing occurring during awake behavior are replayed in temporally compressed bursts during slow-wave sleep [368, 369], and almost in real time during REM sleep [370]. Slow-wave sleep is characterized by the occurrence of bursts of hippocampal network activity: large-amplitude sharp waves originate in CA3 and lead to high-frequency (140–200 Hz) field oscillations, known as ripples, in the CA1 pyramidal cell layer [371, 372]. These ripples are coupled to the occurrence of lower-frequency (7–14 Hz) thalamocortical EEG events known as sleep spindles [373, 374]. The occurrence of sharp waves is also associated with cortical 'up state' transitions [375], and slow oscillations in the prefrontal cortex [376]. It has been suggested that the coupling of patterns of neocortical and hippocampal activity might play a role in the inter-structure transfer of information, or the formation of intra-cortical connections that may underlie the systems consolidation process [377-379]. Replay is not limited to sleep, however: a 'reverse replay' phenomenon has recently been observed following spatial experience in awake rats [380].

Remaining issues concerning theories of memory consolidation. Despite compelling evidence from multiple convergent lines of research, some findings are not easily accommodated by conventional theories of memory consolidation. Graded retrograde amnesia is frequently not observed in studies of rodent spatial memory, for example. This is particularly true in studies of retrograde amnesia for a platform

location in the watermaze after large hippocampal lesions: in at least six such studies conducted to date, no evidence for a sparing of either recent or remote memory has been obtained [381–386] (Fig. 7A). Similar results have been obtained following reversible hippocampal inactivation with lidocaine prior to retention testing [358, 387]. Several possible explanations have been advanced to explain these anomalous findings; we consider each in turn.

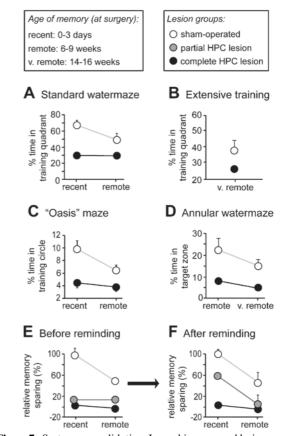


Figure 7. Systems consolidation. Large hippocampal lesions result in temporally ungraded retrograde amnesia in a range of spatial tasks. All panels indicate the degree of spatial bias towards the target location in a retention test, or probe trial, conducted in the absence of reward. (A) Rats were trained in a standard watermaze reference memory task (see Box 1), and given hippocampal lesions at different time points afterwards (see key). Neither recent nor remote memory was spared in lesioned rats, as indicated by performance in a probe trial conducted after recovery from surgery [385]. (B) Very extensive overtraining in a watermaze reference memory task, starting from a young age, still did not result in spared performance following hippocampal damage [386]. (C) Performance on a dry-land, water-reinforced analog of the watermaze – the 'Oasis maze' - was similar to that observed in the watermaze itself [385]. (D) Sparing of remote memory was still not observed after reducing the navigational demands of the watermaze task by limiting swimming to a narrow annulus [385]. (E, F) Consistent with A, both partial and complete hippocampal lesions resulted in temporally ungraded retrograde amnesia in a watermaze reference memory task (E); after a reminder treatment [408], some recovery of recent memory was evident in the partial-lesion group, but remote memory remained at chance (F) [384]. [Data adapted from refs 384–386 with permission from the authors.]

1) The hippocampus might play a permanent role in the storage of certain forms of memory

Spatial memory traces - or some component of such traces - might simply remain in the hippocampus indefinitely. The occasional observation of temporally ungraded retrograde amnesia has led to the proposal of an alternative to consolidation theory. According to the 'multiple trace' hypothesis [388, 389], memories are permanently mediated by hippocampo-cortical traces. Each reactivation of a memory is hypothesized to lead to the formation of additional memory traces. Temporally graded retrograde amnesia can thus be explained by the proliferation of traces over time. Assuming that hippocampal damage is incomplete, remote memories supported by large numbers of redundant traces will be more likely to survive than recent memories supported by very few traces. Despite this prediction, neither partial nor complete destruction of the rat hippocampus in rats reveals a Ribot gradient of retrograde amnesia on spatial memory tasks [384, 385].

However, a revised version of the multiple trace hypothesis [390, 391] attempts to explain why some memories never become independent of the hippocampus; contextually rich memories are proposed to remain dependent on the hippocampus indefinitely; those that acquire a context-free or semantic character become hippocampus-independent over time as the standard consolidation theory predicts. In support of the 'sematicization' view of memory consolidation [392, 393], it is sometimes observed that the remote autobiographical memories that survive in human temporal lobe amnesics are impoverished in detail and richness, and qualitatively different from those in neurologically intact subjects [for reviews, see refs. 390, 391, 394, 395], but it is also possible that these impoverished details are a result of the extratemporal lobe damage that is present in these patients. Similar suggestions have been made with regard to spatial memory in rodents [344, 390]. Importantly, other studies have failed to find qualitative or quantitative differences between healthy participants and amnesic patients with damage confined to the medial temporal lobe. For example, six patients with damage limited primarily to the hippocampal region were able to recollect successfully remote autobiographical memories [396]. The memories of the patients were indistinguishable from the memories of 25 controls with respect to the number of details recalled, the duration of the narratives, and the number of prompts needed to begin a narrative. In a related study [397], five patients with damage limited mainly to the medial temporal lobe not only produced detailed, wellformed remote autobiographical memories that resembled the recollections of the control group, they

also produced recollections that were qualitatively normal by three different measures. First, autobiographical memories were classified using the remember/know method - i.e. whether recall included a feeling of being able to re-experience the original event ('remember'), or did not include this feeling ('know'). Both controls and patients labeled the majority of their remote autobiographical memories as 'remember,' and both groups had similar proportions of 'remember' and 'know' responses. Second, the rated vividness of autobiographical memories was similar for controls and patients. Third, both groups experienced the imagery in their recollections from a first-person perspective. These findings suggest that recollective ability and richness of context is qualitatively normal in patients with damage limited mainly to the medial temporal lobe [397].

Nevertheless, it is reasonable to suppose that contextfree or 'gist' memories might develop after extensive experience in an environment, whereas memories formed after comparatively brief periods of training might remain contextually rich. (Although there is no reason to expect a universal relationship between duration of training and memory type – humans can form semantic memories very rapidly.) In support of this view, rats that are reared in a complex environment exhibit spared spatial memory within the same environment after large hippocampal lesions [398]. The authors argue that this experimental design is a more accurate model for the experiences of human amnesics who often show a relative sparing of spatial memory for neighborhoods in which they spent much of their youth [399, 400]. Consistent with the data of Winocur et al. [398], semantic-like memory resulting from extensive training on a flavor-place paired associate task is unaffected by temporary inactivation of the hippocampus with an AMPA receptor antagonist, despite the fact that the task has a spatial component that is critical for successful performance [171]. Nonetheless, place memory in the watermaze does not become hippocampus independent, even after a greatly extended period of training starting in the first few weeks of a rat's life. Rats were trained in a watermaze reference memory task from the 21st to the 90th day of life, and hippocampal or sham lesions were made 100 days after the end of training – but lesioned animals still performed at chance [386] (Fig. 7B). In fact, if one defines the time of 'learning' as the time when performance first reached above chance levels (the second training day), then the learning-surgery interval in this study was more than 5 months. Thus, in the watermaze, even a massively overtrained spatial memory that was formed many months prior to brain damage remains hippocampus dependent. The reasons for the continued involvement of the hippocampus remain uncertain; a non-mnemonic possibility is considered in the following section.

2) The hippocampus has a role in navigation or spatial information processing, in addition to its role in spatial memory

There is good evidence that the hippocampus plays a role in non-mnemonic aspects of spatial information processing. As an alternative to calculating position allocentrically via distal spatial cues within an environment, it is possible to navigate by dead reckoning or path integration – i.e. by using self-motion cues to calculate current position or to return to a previously visited location. There is evidence that rats are able to use path integration strategies, and that the hippocampus plays a key role [53, 401-405]. This form of navigation is thought to depend on the subcortical and prefrontal connections of the hippocampus because lesions of the fornix are found to impair the path integration abilities of rats [406]. Related to this, it has been suggested that the demands of watermaze probe trials, requiring the constant updating of positional information, and the continuous generation of new trajectories toward the former platform location, might place higher demands on a navigational system than dry-land spatial tasks [407]. Interestingly, evidence for a temporal gradient of retrograde amnesia was obtained in two such studies [343, 344], but the use of reacquisition as an index of retention complicates the interpretation of these findings. Clark and colleagues [385] recently trained animals in a dry-land water-reinforced analogue of the watermaze task, in an explicit attempt to address this issue. However, rats with large hippocampal lesions failed to show any sparing of place memory formed up to 3 months prior to surgery (Fig. 7C). In fact, a recent study of spatial memory in a cross-maze reported no evidence for sparing of place information, even when memories were acquired more than 9 months before hippocampal lesioning [412].

An alternative strategy is to reduce the navigational demands of the watermaze. Building on earlier tasks, Hollup et al. [100] developed an annular version of the watermaze apparatus in which a rat swims around a circular corridor within the pool, and learns to find a hidden escape platform. Memory can be assessed in probe trials with the platform absent; successful memory is indicated by slower swimming in the goal area of the annulus. Despite the fact that this task merely requires recognition of the correct place upon arrival, rather than navigation towards an invisible goal, rats with hippocampal lesions made before training were unable to learn the task, suggesting that the role of the hippocampus is not limited to spatial navigation. Nonetheless, the navigational de-

mands of the open-field watermaze task might still explain the dependence of remote spatial memory on the hippocampus. In order to test this possibility, Clark et al. [385] made hippocampal lesions either 9 or 14 weeks after training in an annular watermaze task. But, as in the open-field version, rats with hippocampal lesions performed at chance regardless of the age of the memory (Fig. 7D). Thus the requirement to generate trajectories toward a hidden goal is not sufficient to explain the temporally ungraded retrograde amnesia typically observed in studies of spatial memory. It should be noted, however, that although the annular maze removes the requirement for navigation, it remains possible that rats nonetheless approach the task in the same manner as the standard watermaze.

3) The hippocampus might play a role in memory retrieval, regardless of the site of long-term memory storage

It is possible that hippocampal lesions disrupt the retrieval rather than (or in addition to) the storage of remote spatial memory. Although the possibility of retrieval failure is difficult to eliminate in any study of memory, the use of reminding techniques can sometimes be useful to assess the possibility that an intact memory initially fails to be expressed. Nonetheless, the use of a reminding procedure that results in a limited recovery of recent place memory following partial hippocampal damage [408] did not reveal any evidence for sparing of remote memory in a water-maze reference memory task [384] (see Fig. 7E, F).

Toward a resolution of the consolidation debate? The neural substrates of very long term place memory remain uncertain, and we cannot rule out the possibility that the hippocampus plays a lasting role in the storage, retrieval, or expression of at least some component of the spatial memory trace. If the hippocampus is involved in memory retrieval, or plays a non-mnemonic role in spatial behavior, large lesions of the entire hippocampal formation are likely be relatively uninformative in analyzing the processes that underlie memory consolidation. However, it is possible that selective disruption of relevant components of the hippocampal circuitry might yield insights into the time-dependent reorganization of memory, without resulting in a catastrophic disruption of hippocampal functioning. One such intervention has recently been developed by Remondes and Schuman [409], who made lesions targeting the direct layer III entorhinal input to CA1. This manipulation impaired memory retention if made soon after training, but had no effect if delayed for 3 weeks after learning. The same lesion had no effect on new learning. These findings suggest that the temporoammonic input to CA1 is involved in the intermediate- to long-term stabilization of memory, but that the intrinsic hippocampal circuitry is sufficient to support normal learning and the retrieval of consolidated memory. Preliminary evidence suggests that another selective hippocampal intervention – the transection of longitudinal fibers in CA3 [68] – preferentially impairs recent memory [69], although it is not yet known whether the interruption of long-range CA3-CA3 or CA3-CA1 projections, or both, is critical for this phenomenon.

A recent study of hippocampal Arc/Arg3.1 mRNA expression after the retrieval of recent versus remote memory is consistent with both of the above sets of findings [349]. The retrieval of recent spatial memory in the watermaze resulted in increased activity in the dorsal CA3, and to a lesser extent in dorsal CA1. However, the most pronounced activation of CA1 occurred in a separate region of the ventral hippocampus. These findings are consistent with a report that metabolic activity in CA1 – assessed using (^{14}C) -2deoxyglucose autoradiography - occurs over a wider portion of the septo-temporal axis than CA3 activation during early acquisition of a spatial task [410]. After remote memory retrieval (1 month after training), Gusev et al. [349] reported an overall reduction in hippocampal activity, consistent with previous imaging studies of remote place memory. Persistent activity was still observed in dorsal CA3, however, but little activity remained in dorsal or ventral CA1. As the authors note, the time-limited activation of CA1 is consistent with the findings of Remondes and Schuman [409] concerning the role of the direct cortical input to this area (although the data raise interesting questions concerning the relevant efferent pathways from CA3). Moreover, the existence of prominent clusters of activity in dorsal CA3 and ventral CA1 after recent memory retrieval suggests a potential role for longitudinal CA3-CA1 projections in the integration of information along the septotemporal axis of the hippocampus – consistent with the disruptive effect of transecting longitudinal projections on recent spatial memory [68, 69]. The time-dependent reorganization of hippocampal activity revealed by these experiments might reflect the operation of early intrahippocampal consolidation processes, or a reorganization of cortico-hippocampal traces seen from a hippocampal perspective. Although our understanding of the mechanistic basis of memory consolidation remains limited, we are optimistic that a focus on specific components of the hippocampal circuitry – in conjunction with the use of reversible inactivation techniques [350]) – will remedy this situation, and ultimately resolve the 'paradox' of long-term spatial memory.

Finally, systems-level memory consolidation might not be the slow incremental progression towards neocortical trace stability that is often supposed; there is evidence that, under some circumstances, memory with a spatial component can become independent of the hippocampus very rapidly [205, 411]. We anticipate that future work will focus to an increasing extent on the interplay between the existing contents of long-term memory and the encoding and consolidation of ongoing experience. Few animal studies have attempted to probe these interactions between newly encoded and permanently stored traces that may well be critical for the admission of new information into long-term memory.

Conclusion

As we acknowledged in the 'Introduction', there is abundant evidence that the hippocampus – even in rodents - does not limit its operations to place memory. But the use of spatial memory tasks still provides a convenient way to engage the structure in studies probing the neural mechanisms of learning and memory. Indeed, much of what we know about how the hippocampus operates stems from such tasks. In this review, we have attempted to draw together some emerging insights into the substrates of encoding, consolidation, and retrieval of spatial memory. The techniques employed in this work range from increasingly specific molecular neurobiological interventions, to the electrophysiological recording of neuronal activity, computational modeling, and ultimately the analysis of behavior. The effort to integrate our understanding at these multiple levels of organization - molecules, cells, circuits, and systems - is only just beginning; but the analysis of memory for place has provided a useful starting point.

Acknowledgements. This work was supported by the Medical Research Council (UK), the Medical Research Service of the Department of Veterans Affairs, the National Science Foundation (0237053), and the James S. McDonnell Foundation (21002077). We are grateful to T. Bast for comments on an early version of the manuscript.

- 1 Swanson, L. W., Köhler, C. and Björklund, A. (1987) The limbic region. I. The septohippocampal system. In: Handbook of Chemical Anatomy, vol. 5, Integrated Systems of the CNS, part 1 (Hökfelt, T., Björklund, A. and Swanson, L. W. Eds), pp. 125 – 277. Elsevier, Amsterdam.
- Witter, M. P. and Amaral, D. G. (2004) Hippocampal formation. In: The Rat Nervous System, 3rd edn (Paxinos, G., Ed.), pp. 637 – 703, Academic Press, San Diego.
- 3 O'Keefe, J. and Nadel, L. (1978) The Hippocampus as a Cognitive Map, p. 570. Oxford University Press, Oxford

- 4 O'Keefe, J. and Dostrovsky, J. (1971) The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171 175.
- 5 Olton, D. S., Becker, J. T. and Handelman, G. E. (1979) Hippocampus, space, and memory. Behav. Brain Sci. 2, 313 – 365.
- 6 Morris, R. G. M., Garrud, P., Rawlins, J. N. and O'Keefe, J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297, 681 – 683.
- 7 Sutherland, R. J., Whishaw, I. Q. and Kolb, B. (1983) A behavioural analysis of spatial localization following electrolytic, kainate- or colchicine-induced damage to the hippocampal formation in the rat. Behav. Brain Res. 7, 133 – 153.
- 8 McGregor, A., Hayward, A. J., Pearce, J. M. and Good, M. A. (2004) Hippocampal lesions disrupt navigation based on the shape of the environment. Behav. Neurosci. 118, 1011 1021.
- 9 Rawlins, J. N. and Olton, D. S. (1982) The septo-hippocampal system and cognitive mapping. Behav. Brain Res. 5, 331 358.
- 10 Kimble, D. P. (1969) Possible inhibitory functions of the hippocampus. Neuropsychologia 7, 235 244.
- 11 Gray, J. A. and McNaughton, N. (2003) The Neuropsychology of Anxiety: An Enquiry into the Function of the Septohippocampal System, p. 442, Oxford University Press, Oxford
- 12 Mogenson, G. J. and Yang, C. R. (1991) The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv. Exp. Med. Biol. 295, 267 290.
- 13 Bland, B. H. and Oddie, S. D. (2001) Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behav. Brain Res. 127, 119 136.
- 14 Vinogradova, O. S. (2001) Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 11, 578 – 598.
- 15 Lathe, R. (2001) Hormones and the hippocampus. J. Endocrinol. 169, 205 231.
- 16 Bast, T. and Feldon, J. (2003) Hippocampal modulation of sensorimotor processes. Prog. Neurobiol. 70, 319 345.
- 17 Wesierska, M., Dockery, C. and Fenton, A. A. (2005) Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 25, 2413 – 2419.
- 18 Jacobs L. F. (2006) From movement to transitivity: the role of hippocampal parallel maps in configural learning. Rev. Neurosci. 17, 99 – 109.
- 19 Squire, L. R. (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195 231.
- 20 Tulving, E. and Markowitsch, H. J. (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8, 198 – 204.
- 21 Clayton, N. S., Griffiths, D. P., Emery, N. J. and Dickinson, A. (2001) Elements of episodic-like memory in animals. Phil. Trans. R. Soc. Lond. B Biol. Sci. 356, 1483 1491.
- 22 Morris, R. G. M. (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Phil. Trans. R. Soc. Lond. B Biol. Sci. 356, 1453 – 1465.
- 23 Sutherland, R. J. and Rudy, J. W. (1989) Configural association theory: the role of the hippocampal formation in learning, memory and amnesia. Psychobiology 17, 129 – 144.
- 24 Rudy, J. W. and Sutherland, R. J. (1995) Configural association theory and the hippocampal formation: an appraisal and reconfiguration. Hippocampus 5, 375 – 389.
- 25 Eichenbaum, H. (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109 – 120.
- 26 Hirsh, R. (1974) The hippocampus and contextual retrieval of information from memory: a theory. Behav. Biol. 12, 421 – 444.

- 27 Good, M. and Honey, R. C. (1991) Conditioning and contextual retrieval in hippocampal rats. Behav. Neurosci. 105, 499 – 509
- 28 Wise, S. P. and Murray, E. A. (2000) Arbitrary associations between antecedents and actions. Trends Neurosci. 23, 271 276.
- 29 Rawlins, J. N. P. (1985) Associations across time: the hippocampus as a temporary memory store. Behav. Brain Sci. 8, 479 416.
- 30 Wallenstein, G. V., Eichenbaum, H. and Hasselmo, M. E. (1998) The hippocampus as an associator of discontiguous events. Trends Neurosci. 21, 317 323.
- 31 Schmujak, N. A. (1984) Psychological theories of hippocampal function. Physiol. Psychol. 12, 166 183.
- 32 Eichenbaum, H., Otto, T. and Cohen, N. J. (1992) The hippocampus what does it do? Behav. Neural Biol. 57, 2 36.
- 33 Jaffard, R. and Meunier, M. (1993) Role of the hippocampal formation in learning and memory. Hippocampus 3, 203 – 217.
- 34 Jarrard, L. E. (1995) What does the hippocampus really do? Behav. Brain Res. 71, 1 10.
- 35 Good, M. (2002) Spatial memory and hippocampal function: where are we now? Psicologica 23, 109 138.
- 36 Squire, L. R., Stark, C. E. and Clark, R. E. (2004) The medial temporal lobe Annu. Rev. Neurosci. 27, 279 306.
- 37 Gewirtz, J. C., McNish, K. A. and Davis, M. (2000) Is the hippocampus necessary for contextual fear conditioning? Behav. Brain Res. 110, 83 – 95.
- 38 LeDoux J. E. (2000) Emotion circuits in the brain Annu. Rev. Neurosci. 23, 155 – 184.
- 39 Fanselow, M. S. (2000) Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res. 110, 73 81.
- 40 Maren, S. (2001) Neurobiology of Pavlovian fear conditioning Annu. Rev. Neurosci. 24, 897 – 931.
- 41 Anagnostaras, S. G., Gale, G. D. and Fanselow, M. S. (2001) Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11, 8 17.
- 42 Sacchetti, B., Lorenzini, C. A., Baldi, E., Bucherelli, C., Roberto, M., Tassoni, G. and Brunelli, M. (2002) Timedependent inhibition of hippocampal LTP in vitro following contextual fear conditioning in the rat. Eur. J. Neurosci. 15, 143 – 150.
- 43 Rudy, J. W., Huff, N. C. and Matus-Amat, P. (2004) Understanding contextual fear conditioning: insights from a two-process model. Neurosci. Biobehav. Rev. 28, 675 685.
- 44 Izquierdo, L. A., Barros, D. M., Vianna, M. R., Coitinho, A., deDavid e Silva, T., Choi, H., Moletta, B., Medina, J. H. and Izquierdo, I. (2002) Molecular pharmacological dissection of short- and long-term memory. Cell. Mol. Neurobiol. 22, 269 287
- 45 McGaugh, J. L., McIntyre, C. K. and Power, A. E. (2002) Amygdala modulation of memory consolidation: interaction with other brain systems. Neurobiol. Learn. Mem. 78, 539 – 552.
- 46 Barros, D. M., Izquierdo, L. A., Medina, J. H. and Izquierdo, I. (2003) Pharmacological findings contribute to the understanding of the main physiological mechanisms of memory retrieval. Curr. Drug Targets CNS Neurol. Disord. 2, 81 – 94.
- 47 Davidson, T. L. and Jarrard, L. E. (2004) The hippocampus and inhibitory learning: a 'Gray' area? Neurosci. Biobehav. Rev. 28, 261 271.
- 48 Morris, R. G. M. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47 60.
- 49 Stewart, C. A. and Morris, R. G. M. (1993) The watermaze. In: Behavioural Neuroscience: A Practical Approach. vol. 1 (Sahgal A., Ed.), pp. 107 – 122, IRL Press, New York
- 50 Morris, R. G. M., Schenk, F., Tweedie, F. and Jarrard, L. E. (1990) Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur. J. Neurosci. 2, 1016 – 1028.

- 51 Bast, T. and Morris, R. G. M. (2006) The speedy seahorse: hippocampal contributions to rapid vs. incremental place learning. FENS Abstr., vol. 3, A019.7.
- 52 Morris, R. G. M., Hagan, J. J. and Rawlins, J. N. (1986) Allocentric spatial learning by hippocampectomised rats: a further test of the 'spatial mapping' and 'working memory' theories of hippocampal function. Q. J. Exp. Psychol. B 38, 365 – 395.
- 53 Whishaw, I. Q. and Jarrard, L. E. (1996) Evidence for extrahippocampal involvement in place learning and hippocampal involvement in path integration. Hippocampus 6, 513 – 524.
- 54 Day, L. B., Weisand, M., Sutherland, R. J. and Schallert, T. (1999) The hippocampus is not necessary for a place response but may be necessary for pliancy. Behav. Neurosci. 113, 914 – 924.
- 55 McDonald, R. J. and Hong, N. S. (2000) Rats with hippocampal damage are impaired on place learning in the water task when overtrained under constrained conditions. Hippocampus 10, 153 161.
- 56 Eichenbaum, H., Stewart, C. and Morris, R. G. M. (1990) Hippocampal representation in place learning. J. Neurosci. 10, 3531 – 3542.
- 57 Compton, D. M., Griffith, H. R., McDaniel, W. F., Foster, R. A. and Davis, B. K. (1997) The flexible use of multiple cue relationships in spatial navigation: a comparison of water maze performance following hippocampal, medial septal, prefrontal cortex, or posterior parietal cortex lesions. Neurobiol. Learn. Mem. 68, 117 132.
- 58 Ramos, J. M. and Vaquero, J. M. (2000) The hippocampus and flexible spatial knowledge in rats. J. Physiol. Biochem. 56, 313 320.
- 59 Ramos, J. M. (2002) Training method dramatically affects the acquisition of a place response in rats with neurotoxic lesions of the hippocampus. Neurobiol. Learn. Mem. 77, 109 – 118.
- 60 Clark, R. E. and Martin, S. J. (2005) Interrogating rodents regarding their object and spatial memory. Curr. Opin. Neurobiol. 15, 593 – 598.
- 61 Morris, R. G. M. (1983) An attempt to dissociate 'spatial mapping' and 'working memory' theories of hippocampal function. In: Neurobiology of the Hippocampus (Siefert W., Ed.), pp. 405 432, Academic Press, London.
- 62 Whishaw, I. Q. (1985) Formation of a place learning-set by the rat: a new paradigm for neurobehavioral studies. Physiol. Behav. 35, 139 143.
- 63 Steele, R. J. and Morris, R. G. M. (1999) Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9, 118 – 136.
- 64 Whishaw, İ. Q. (1987) Hippocampal, granule cell and CA3 4 lesions impair formation of a place learning-set in the rat and induce reflex epilepsy. Behav. Brain Res. 24, 59 72.
- 65 de Hoz, L., Moser, E. I. and Morris, R. G. M. (2005) Spatial learning with unilateral and bilateral hippocampal networks. Eur. J. Neurosci. 22, 745 – 754.
- 66 da Silva, B. M., Bast, T. and Morris, R. G. M. (2005) Forgetting of 1-trial place memory in rats: an indication of recall-and familiarity-like retrieval processes? Soc. Neurosci. Abstr., Program no. 995.6.
- 67 Moser, M.-B. and Moser, E. I. (1998) Distributed encoding and retrieval of spatial memory in the hippocampus. J. Neurosci. 18, 7535 7542.
- 68 Steffenach, H.-A., Sloviter, R. S., Moser, E. I. and Moser, M.-B. (2002) Impaired retention of spatial memory after transection of longitudinally oriented axons of hippocampal CA3 pyramidal cells. Proc. Natl. Acad. Sci. USA 99, 3194 3198.
- 69 Martin, S. J., Bast, T., Steffenach, H.-A., Paterson, A. and Morris, R. G. M. (2005) Temporally graded retrograde amnesia for place information following transection of longitudinal fibres in area CA3 of the dorsal hippocampus. Soc. Neurosci. Abstr., Program No. 995.6.

- 70 Handelmann, G. E. and Olton, D. S. (1981) Spatial memory following damage to hippocampal CA3 pyramidal cells with kainic acid: impairment and recovery with preoperative training. Brain Res. 217, 41 – 58.
- 71 Jarrard, L. E. (1983) Selective hippocampal lesions and behavior: effects of kainic acid lesions on performance of place and cue tasks. Behav. Neurosci. 97, 873 889.
- 72 Xavier, G. F., Oliveira-Filho, F. J. and Santos, A. M. (1999) Dentate gyrus-selective colchicine lesion and disruption of performance in spatial tasks: difficulties in 'place strategy' because of a lack of flexibility in the use of environmental cues? Hippocampus 9, 668 – 681.
- 73 Lassalle, J. M., Bataille, T. and Halley, H. (2000) Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol. Learn. Mem. 73, 243 257.
- 74 Daumas, S., Halley, H. and Lassalle, J. M. (2004) Disruption of hippocampal CA3 network: effects on episodic-like memory processing in C57BL/6J mice. Eur. J. Neurosci. 20, 597 – 600.
- 75 Florian, C. and Roullet, P. (2004) Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water maze task in mice. Behav. Brain. Res. 154, 365 374.
- 76 Andersen, P., Bliss, T. V. P., Lomo, T., Olsen, L. I. and Skrede, K. K. (1969) Lamellar organization of hippocampal excitatory pathways. Acta. Physiol. Scand. 76, 4A-5A.
- 77 Andersen, P., Soleng, A. F. and Raastad, M. (2000) The hippocampal lamella hypothesis revisited. Brain Res. 886, 165 – 171.
- 78 Amaral, D. G. and Witter, M. P. (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571 591.
- 79 O'Reilly, R. C. and McClelland, J. L. (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4, 661 682.
- 80 Marr, D. (1971) Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B Biol. Sci. 262, 23 81.
- 81 Rolls, E. T. (1996) A theory of hippocampal function in memory. Hippocampus 6, 601 620.
- 82 Gilbert, P. E., Kesner, R. P. and DeCoteau, W. E. (1998) Memory for spatial location: role of the hippocampus in mediating spatial pattern separation. J. Neurosci. 18, 804 – 810.
- 83 Gilbert, P. E., Kesner, R. P. and Lee, I. (2001) Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus 11, 626 636.
- 84 Rolls, E. T. and Kesner, R. P. (2006) A computational theory of hippocampal function, and empirical tests of the theory. Prog. Neurobiol. 79, 1 48.
- 85 Gross, C. G. (2000) Neurogenesis in the adult brain: death of a dogma. Nat. Rev. Neurosci. 1, 67 73.
- 86 Leuner, B., Gould, E. and Shors, T. J. (2006) Is there a link between adult neurogenesis and learning? Hippocampus 16, 216 224.
- 87 Becker, S. (2005) A computational principle for hippocampal learning and neurogenesis. Hippocampus 15, 722 738.
- 88 McNaughton, B. L. and Morris, R. G. M. (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10, 408 – 415.
- 89 Treves, A. and Rolls, E. T. (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2, 189 199.
- 90 Eichenbaum, H. and Buckingham, J. (1990) Studies on hippocampal processing: experiment, theory and model. In: Learning and Computational Neuroscience: Foundation of Adaptive Networks (Moore J., Ed.) pp. 171 – 231. MIT Press, Cambridge
- 91 Hasselmo, M. E. and Wyble, B. P. (1997) Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behav. Brain Res. 89, 1 34.

- 92 Lisman, J. E. and Otmakhova, N. A. (2001) Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11, 551 568.
- 93 Fyhn, M., Molden, S., Hollup, S., Moser, M. B. and Moser, E. (2002) Hippocampal neurons responding to first-time dislocation of a target object. Neuron 35, 555 566.
- 94 Lisman, J. E. and Grace, A. A. (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703 713.
- 95 Ang, C. W., Carlson, G. C. and Coulter, D. A. (2005) Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies. J. Neurosci. 25, 9567 – 9580.
- 96 Lee, I., Hunsaker, M. R. and Kesner, R. P. (2005) The role of hippocampal subregions in detecting spatial novelty. Behav. Neurosci. 119, 145 – 153.
- 97 Hasselmo, M. E. (2005) The role of hippocampal regions CA3 and CA1 in matching entorhinal input with retrieval of associations between objects and context: theoretical comment on Lee et al. (2005). Behav. Neurosci. 119, 342 345.
- 98 Brun, V. H., Otnass, M. K., Molden, S., Steffenach, H.-A., Witter, M. P., Moser, M.-B. and Moser, E. I. (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243 – 2246.
- 99 Mizumori, S. J., Barnes, C. A. and McNaughton, B. L. (1989) Reversible inactivation of the medial septum: selective effects on the spontaneous unit activity of different hippocampal cell types. Brain Res. 500, 99 – 106.
- 100 Hollup, S. A., Kjelstrup, K. G., Hoff, J., Moser, M.-B. and Moser, E. I. (2001) Impaired recognition of the goal location during spatial navigation in rats with hippocampal lesions. J. Neurosci. 21, 4505 – 4513.
- 101 Fyhn, M., Molden, S., Witter, M. P., Moser, E. I. and Moser, M.-B. (2004) Spatial representation in the entorhinal cortex. Science 305, 1258 – 1264.
- 102 Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. and Moser, E. I. (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801 – 806.
- 103 Moser, E., Moser, M.-B. and Andersen, P. (1993) Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J. Neurosci. 13, 3916 – 3925.
- 104 Moser, M.-B., Moser, E. I., Forrest, E., Andersen, P. and Morris, R. G. M. (1995) Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. USA 92, 9697 – 0701
- 105 Moser, M.-B. and Moser, E. I. (1998) Functional differentiation in the hippocampus. Hippocampus 8, 608 619.
- 106 Potvin, O., Allen, K., Thibaudeau, G., Dore, F. Y. and Goulet, S. (2006) Performance on spatial working memory tasks after dorsal or ventral hippocampal lesions and adjacent damage to the subiculum. Behav. Neurosci. 120, 413 – 422.
- 107 Thierry A. M., Gioanni Y., Degenetais E. and Glowinski J. (2000) Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10, 411 – 419.
- 108 Bannerman, D. M., Rawlins, J. N., McHugh, S. B., Deacon, R. M., Yee, B. K., Bast, T., Zhang, W. N., Pothuizen, H. H. and Feldon, J. (2004) Regional dissociations within the hippocampus memory and anxiety. Neurosci. Biobehav. Rev. 28, 273 283.
- 109 Steffenach, H.-A., Witter, M., Moser, M.-B. and Moser, E. I. (2005) Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45, 301 – 313.
- 110 Jung, M. W., Wiener, S. I. and McNaughton, B. L. (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J. Neurosci. 14, 7347 – 7356.
- 111 Maurer, A. P., VanRhoads, S. R., Sutherland, G. R., Lipa, P. and McNaughton, B. L. (2005) Self-motion and the origin of

- differential spatial scaling along the septo-temporal axis of the hippocampus. Hippocampus 15, 841 852.
- 112 Kjelstrup, K. B., Solstad, T., Brun, V. H., Fyhn, M., Hafting, T., Leutgeb, S., Witter, M. P., Moser, M.-B. and Moser, E. I. (2006) Spatial scale expansion along the dorsal-to-ventral axis of hippocampal area CA3 in the rat. FENS Abstr. vol. 3, A197.33.
- 113 Richmond, M. A., Yee, B. K., Pouzet, B., Veenman, L., Rawlins, J. N., Feldon, J. and Bannerman, D. M. (1999) Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behav. Neurosci. 113, 1189 – 1203.
- 114 Bannerman, D. M., Yee, B. K., Good, M. A., Heupel, M. J., Iversen, S. D. and Rawlins, J. N. (1999) Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav. Neurosci. 113, 1170 – 1188.
- 115 Pothuizen, H. H., Zhang, W. N., Jongen-Relo, A. L., Feldon, J. and Yee, B. K. (2004) Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur. J. Neurosci. 19, 705 712.
- 116 Bast, T., Zhang, W. N., Heidbreder, C. and Feldon, J. (2001) Hyperactivity and disruption of prepulse inhibition induced by N-methyl-D-aspartate stimulation of the ventral hippocampus and the effects of pretreatment with haloperidol and clozapine. Neuroscience 103, 325 – 335.
- 117 Kjelstrup, K. G., Tuvnes, F. A., Steffenach, H.-A., Murison, R., Moser, E. I. and Moser, M.-B. (2002) Reduced fear expression after lesions of the ventral hippocampus Proc. Natl. Acad. Sci. USA 99, 10825 – 10830.
- 118 Bannerman, D. M., Deacon, R. M., Offen, S., Friswell, J., Grubb, M. and Rawlins, J. N. (2002) Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. Behav. Neurosci. 116, 884 – 901.
- 119 Bannerman D. M., Grubb M., Deacon R. M., Yee B. K., Feldon J. and Rawlins J. N. (2003) Ventral hippocampal lesions affect anxiety but not spatial learning. Behav. Brain Res. 139, 197 – 213.
- 120 Davidson, T. L. and Jarrard, L. E. (1993) A role for hippocampus in the utilization of hunger signals. Behav. Neural Biol. 59, 167 171.
- 121 Hock, B. J., Jr. and Bunsey, M. D. (1998) Differential effects of dorsal and ventral hippocampal lesions. J. Neurosci. 18, 7027 – 7032.
- 122 de Hoz, L., Knox, J. and Morris, R. G. M. (2003) Longitudinal axis of the hippocampus: both septal and temporal poles of the hippocampus support water maze spatial learning depending on the training protocol. Hippocampus 13, 587 603.
- 123 Ferbinteanu, J., Ray, C. and McDonald, R. J. (2003) Both dorsal and ventral hippocampus contribute to spatial learning in Long-Evans rats. Neurosci. Lett. 345, 131 – 135.
- 124 Bullock, T. H., Buzsaki, G. and McClune, M. C. (1990) Coherence of compound field potentials reveals discontinuities in the CA1-subiculum of the hippocampus in freelymoving rats. Neuroscience 38, 609 – 619.
- 125 Gloveli, T., Dugladze, T., Rotstein, H. G., Traub, R. D., Monyer, H., Heinemann, U., Whittington, M. A. and Kopell, N. J. (2005) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc. Natl. Acad. Sci. USA 102, 13295 – 13300.
- 126 Morris, R. G. M., Davis, S. and Butcher, S. P. (1990) Hippocampal synatic plasticity and NMDA receptors: a role in information storage? Phil. Trans. R. Soc. Lond. B Biol. Sci. 329, 187 – 204.
- 127 Danysz, W., Zajaczkowski, W. and Parsons, C. G. (1995) Modulation of learning processes by ionotropic glutamate receptor ligands. Behav. Pharmacol. 6, 455 – 474.
- 128 Izquierdo, I. and Medina, J. H. (1997) Memory formation: the sequence of biochemical events in the hippocampus and its

- connection to activity in other brain structures. Neurobiol. Learn. Mem. 68, 285 316.
- 129 Martin, S. J., Grimwood, P. D. and Morris, R. G. M. (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649 – 711.
- 130 Riedel, G., Wetzel, W. and Reymann, K. G. (1996) Comparing the role of metabotropic glutamate receptors in long-term potentiation and in learning and memory. Prog. Neuropsychopharmacol. Biol. Psychiatry. 20, 761 – 789.
- 131 Anwyl, R. (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res. Brain Res. Rev. 29, 83 – 120.
- 132 Holscher, C., Gigg, J. and O'Mara, S. M. (1999) Metabotropic glutamate receptor activation and blockade: their role in long-term potentiation, learning and neurotoxicity. Neurosci. Biobehav. Rev. 23, 399 – 410.
- 133 Braunewell, K. H. and Manahan-Vaughan, D. (2001) Long-term depression: a cellular basis for learning? Rev. Neurosci. 12, 121 140.
- 134 Riedel, G., Platt, B. and Micheau, J. (2003) Glutamate receptor function in learning and memory. Behav. Brain Res. 140, 1 47.
- 135 Simonyi, A., Schachtman, T. R. and Christoffersen, G. R. (2005) The role of metabotropic glutamate receptor 5 in learning and memory processes. Drug News Perspect. 18, 353 361.
- 136 Moosmang, S., Haider, N., Klugbauer, N., Adelsberger, H., Langwieser, N., Muller, J., Stiess, M., Marais, E., Schulla, V., Lacinova, L., Goebbels, S., Nave, K. A., Storm, D. R., Hofmann, F. and Kleppisch, T. (2005) Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J. Neurosci. 25, 9883 – 9892.
- 137 Grant, S. G. and Silva, A. J. (1994) Targeting learning. Trends Neurosci. 17, 71 75.
- 138 Huang, E. P. and Stevens, C. F. (1998) The matter of mind: molecular control of memory. Essays Biochem. 33, 165 178.
- 139 Mayford M. and Kandel, E. R. (1999) Genetic approaches to memory storage. Trends Genet. 15, 463 – 470.
- 140 Winder, D. G. and Schramm, N. L. (2001) Plasticity and behavior: new genetic techniques to address multiple forms and functions. Physiol. Behav. 73, 763 – 780.
- 141 Gerlai, R. (2002) Hippocampal LTP and memory in mouse strains: is there evidence for a causal relationship? Hippocampus 12, 657 666.
- 142 Wittenberg, G. M. and Tsien, J. Z. (2002) An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci. 25, 501 – 505.
- 143 Silva, A. J. (2003) Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J. Neurobiol. 54, 224 – 237
- 144 Tonegawa S., Nakazawa, K. and Wilson, M. A. (2003) Genetic neuroscience of mammalian learning and memory. Phil. Trans. R. Soc. Lond. B Biol. Sci. 358, 787 – 795.
- 145 Elgersma Y., Sweatt, J. D. and Giese, K. P. (2004) Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. J. Neurosci. 24, 8410 – 8415.
- 146 Wang H., Hu, Y. and Tsien, J. Z. (2006) Molecular and systems mechanisms of memory consolidation and storage. Prog. Neurobiol. 79, 123 – 135.
- 147 Lee, I. and Kesner, R. P. (2002) Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat. Neurosci. 5, 162 – 168.
- 148 Moser, E. I., Krobert, K. A., Moser M.-B. and Morris, R. G. M. (1998) Impaired spatial learning after saturation of longterm potentiation. Science 281, 2038 – 2042.
- 149 Tsien, J. Z., Huerta, P. T. and Tonegawa, S. (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327 – 1338.
- 150 Bannerman, D. M., Good, M. A., Butcher, S. P., Ramsay, M. and Morris, R. G. M. (1995) Distinct components of spatial

- learning revealed by prior training and NMDA receptor blockade. Nature 378, 182 186.
- 151 Saucier, D. and Cain, D. P. (1995) Spatial learning without NMDA receptor-dependent long-term potentiation. Nature 378, 186 – 189.
- 152 Otnaess, M. K., Brun, V. H., Moser M.-B. and Moser, E. I. (1999) Pretraining prevents spatial learning impairment after saturation of hippocampal long-term potentiation. J. Neurosci. 19, RC49.
- 153 Zamanillo D., Sprengel R., Hvalby O., Jensen V., Burnashev N., Rozov A., Kaiser, K. M., Koster, H. J., Borchardt T., Worley P., Lubke J., Frotscher M., Kelly, P. H., Sommer B., Andersen P., Seeburg, P. H. and Sakmann, B. (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805 1811
- 154 Reisel D., Bannerman, D. M., Schmitt, W. B., Deacon, R. M., Flint J., Borchardt T., Seeburg, P. H. and Rawlins, J. N. (2002) Spatial memory dissociations in mice lacking GluR1. Nat. Neurosci. 5, 868 – 873.
- 155 Bannerman, D. M., Deacon, R. M., Seeburg, P. H. and Rawlins, J. N. (2003) GluR-A-deficient mice display normal acquisition of a hippocampus-dependent spatial reference memory task but are impaired during spatial reversal. Behav. Neurosci. 117, 866 – 870.
- 156 Schmitt, W. B., Deacon, R. M., Reisel D., Sprengel R., Seeburg, P. H., Rawlins, J. N. and Bannerman, D. M. (2004) Spatial reference memory in GluR-A-deficient mice using a novel hippocampal-dependent paddling pool escape task. Hippocampus 14, 216 – 223.
- 157 Schmitt, W. B., Deacon, R. M., Seeburg, P. H., Rawlins, J. N. and Bannerman, D. M. (2003) A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-Adeficient mice. J. Neurosci. 23, 3953 3959.
- 158 Schmitt, W. B., Arianpour R., Deacon, R. M., Seeburg, P. H., Sprengel R., Rawlins, J. N. and Bannerman, D. M. (2004) The role of hippocampal glutamate receptor-A-dependent synaptic plasticity in conditional learning: the importance of spatiotemporal discontiguity. J. Neurosci. 24, 7277 7282.
- 159 Schmitt, W. B., Sprengel R., Mack V., Draft, R. W., Seeburg, P. H., Deacon, R. M., Rawlins, J. N. and Bannerman, D. M. (2005) Restoration of spatial working memory by genetic rescue of GluR-A-deficient mice. Nat. Neurosci. 8, 270 – 272.
- 160 Xu L., Anwyl, R. and Rowan, M. J. (1998) Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature 394, 891 – 894.
- 161 Manahan-Vaughan, D. and Braunewell, K. H. (1999) Novelty acquisition is associated with induction of hippocampal longterm depression. Proc. Natl. Acad. Sci. USA 96, 8739 – 8744.
- 162 Zeng H., Chattarji S., Barbarosie M., Rondi-Reig L., Philpot, B. D., Miyakawa T., Bear, M. F. and Tonegawa, S. (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107, 617 – 629.
- Migaud M., Charlesworth P., Dempster M., Webster, L. C., Watabe, A. M., Makhinson M., He Y., Ramsay, M. F., Morris, R. G., Morrison, J. H., O'Dell, T. J. and Grant, S. G. (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433 – 439.
- 164 Tang, Y. P., Shimizu E., Dube, G. R., Rampon C., Kerchner, G. A., Zhuo M., Liu, G. and Tsien, J. Z. (1999) Genetic enhancement of learning and memory in mice. Nature 401, 63 69.
- 165 Nakazawa K., Quirk, M. C., Chitwood, R. A., Watanabe M., Yeckel, M. F., Sun, L. D., Kato A., Carr, C. A., Johnston D., Wilson, M. A. and Tonegawa, S. (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211 – 218.
- 166 Nakazawa K., Sun, L. D., Quirk, M. C., Rondi-Reig L., Wilson, M. A. and Tonegawa, S. (2003) Hippocampal CA3

- NMDA receptors are crucial for memory acquisition of onetime experience. Neuron 38, 305 – 315.
- 167 Moser M.-B. and Moser, E. I. (2000) Pretraining and the function of hippocampal long-term potentiation. Neuron 26, 559 – 561.
- 168 Morris, R. G. M., Halliwell, R. F. and Bowery, N. (1989) Synaptic plasticity and learning. II. Do different kinds of plasticity underlie different kinds of learning? Neuropsychologia 27, 41 – 59.
- 169 Heale, V. and Harley, C. (1990) MK-801 and AP5 impair acquisition, but not retention, of the Morris milk maze. Pharmacol. Biochem. Behav. 36, 145 149.
- 170 Bast T., da Silva, B. M. and Morris, R. G. M. (2005) Distinct contributions of hippocampal NMDA and AMPA receptors to encoding and retrieval of one-trial place memory. J. Neurosci. 25, 5845 – 5856.
- 171 Day M., Langston, R. and Morris, R. G. M. (2003) Glutamatereceptor-mediated encoding and retrieval of paired-associate learning. Nature 424, 205 – 209.
- 172 Sara, S. J. (2000) Retrieval and reconsolidation: toward a neurobiology of remembering Learn. Mem. 7, 73 84.
- 173 Nader K., Schafe, G. E. and LeDoux, J. E. (2000) The labile nature of consolidation theory. Nat. Rev. Neurosci. 1, 216 – 219.
- 174 Gold, A. E. and Kesner, R. P. (2005) The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat. Hippocampus 15, 808 814.
- 175 Lee I., Jerman, T. S. and Kesner, R. P. (2005) Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus. Neurobiol. Learn. Mem. 84, 138 – 147.
- 176 Lee I., Yoganarasimha D., Rao, G. and Knierim, J. J. (2004) Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430, 456 – 459.
- Leutgeb S., Leutgeb, J. K., Treves A., Moser M.-B. and Moser,
 E. I. (2004) Distinct ensemble codes in hippocampal areas
 CA3 and CA1. Science 305, 1295 1298.
- 178 Guzowski, J. F., Knierim, J. J. and Moser, E. I. (2004) Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44, 581 – 584.
- 179 Vazdarjanova, A. and Guzowski, J. F. (2004) Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J. Neurosci. 24, 6489 – 6496.
- 180 Lever C., Wills T., Cacucci F., Burgess, N. and O'Keefe, J. (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416, 90 – 94.
- 181 Wills, T. J., Lever C., Cacucci F., Burgess, N. and O'Keefe, J. (2005) Attractor dynamics in the hippocampal representation of the local environment. Science 308, 873 – 876.
- 182 Leutgeb, J. K., Leutgeb S., Treves A., Meyer R., Barnes, C. A., McNaughton, B. L., Moser M.-B. and Moser, E. I. (2005) Progressive transformation of hippocampal neuronal representations in 'morphed' environments. Neuron 48, 345 358.
- 183 Huxter J., Burgess, N. and O'Keefe, J. (2003) Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425, 828 832.
- 184 Leutgeb S., Leutgeb, J. K., Barnes, C. A., Moser, E. I., McNaughton, B. L. and Moser M.-B. (2005) Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309, 619 – 623.
- 185 O'Keefe, J. and Burgess, N. (2005) Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15, 853 – 866.
- 186 Leutgeb S., Leutgeb, J. K., Moser, M. B. and Moser, E. I. (2005) Place cells, spatial maps and the population code for memory. Curr. Opin. Neurobiol. 15, 738 – 746.
- 187 Lee, I. and Kesner, R. P. (2004) Encoding versus retrieval of spatial memory: double dissociation between the dentate

- gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus 14, 66 76.
- 188 Hasselmo, M. E., Bodelon, C. and Wyble, B. P. (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793 – 817.
- 189 Brankack J., Stewart, M. and Fox, S. E. (1993) Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators. Brain Res. 615, 310 – 327.
- 190 Murchison, C. F., Zhang, X. Y., Zhang, W. P., Ouyang M., Lee, A. and Thomas, S. A. (2004) A distinct role for norepinephrine in memory retrieval. Cell 117, 131 – 143.
- 191 Zhang, W. P., Guzowski, J. F. and Thomas, S. A. (2005) Mapping neuronal activation and the influence of adrenergic signaling during contextual memory retrieval. Learn. Mem. 12, 239 – 247.
- 192 Hasselmo, M. E., Wyble, B. P. and Wallenstein, G. V. (1996) Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus 6, 693 – 708.
- 193 Meeter M., Murre, J. M. and Talamini, L. M. (2004) Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits Hippocampus 14, 722 – 741.
- 194 Paulsen, O. and Moser, E. I. (1998) A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci. 21, 273 – 278.
- 195 Floresco, S. B., Seamans, J. K. and Phillips, A. G. (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J. Neurosci. 17, 1880 – 1890.
- 196 Thomas, K. L., Hall, J. and Everitt, B. J. (2002) Cellular imaging with zif268 expression in the rat nucleus accumbens and frontal cortex further dissociates the neural pathways activated following the retrieval of contextual and cued fear memory. Eur. J. Neurosci. 16, 1789 – 1796.
- 197 Botreau F., El Massioui N., Cheruel, F. and Gisquet-Verrier, P. (2004) Effects of medial prefrontal cortex and dorsal striatum lesions on retrieval processes in rats. Neuroscience 129, 539 – 553.
- 198 Poucet B., Lenck-Santini, P. P., Hok V., Save E., Banquet, J. P., Gaussier, P. and Muller, R. U. (2004) Spatial navigation and hippocampal place cell firing: the problem of goal encoding. Rev. Neurosci. 15, 89 107.
- 199 Floresco, S. B. and Phillips, A. G. (2001) Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behav. Neurosci. 115, 934 – 939.
- 200 Barros, D. M., Mello e Souza T., De David T., Choi H., Aguzzoli A., Madche C., Ardenghi P., Medina, J. H. and Izquierdo, I. (2001) Simultaneous modulation of retrieval by dopaminergic D(1), beta-noradrenergic, serotonergic-1A and cholinergic muscarinic receptors in cortical structures of the rat. Behav. Brain Res. 124, 1 – 7.
- 201 McGaugh, J. L. and Roozendaal, B. (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr. Opin. Neurobiol. 12, 205 210.
- 202 Gisquet-Verrier P., Botreau F., Venero, C. and Sandi, C. (2004) Exposure to retrieval cues improves retention performance and induces changes in ACTH and corticosterone release. Psychoneuroendocrinology 29, 529 – 556.
- 203 Morris, R. G. M. and Frey, U. (1997) Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Phil. Trans, R. Soc. Lond. B Biol. Sci. 352, 1489 – 1503.
- 204 Frey, U. and Morris, R. G. M. (1998) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21, 181 – 188.
- 205 Morris, R. G. M. (2006) Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity,

- synaptic tagging and schemas. Eur. J. Neurosci. 23, 2829 2846.
- 206 McGaugh, J. L. (2000) Memory a century of consolidation. Science 287, 248 – 251.
- 207 Dudai, Y. and Morris, R. G. M. (2000) To consolidate or not to consolidate: what are the questions? In: Brain, Perception, Memory (Bolhuis, J. J., Ed.) pp. 149 – 162, Oxford University Press, Oxford
- 208 Squire, L. R. and Alvarez, P. (1995) Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin. Neurobiol. 5, 169 – 177.
- 209 Morris, R. G. M., Moser, E. I., Riedel G., Martin, S. J., Sandin J., Day, M. and O'Carroll, C. (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory Phil. Trans. R. Soc. Lond. B Biol. Sci. 358, 773 786.
- 210 Packard, M. G. and Teather, L. A. (1997) Double dissociation of hippocampal and dorsal-striatal memory systems by posttraining intracerebral injections of 2-amino-5-phosphonopentanoic acid. Behav. Neurosci. 111, 543 – 551.
- 211 McDonald R., Hong N., Craig L., Holahan M., Louis, M. and Muller, R. (2005) NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus. Eur. J. Neurosci. 22, 1201 – 1213.
- 212 Izquierdo I., Izquierdo, L. A., Barros, D. M., Mello e Souza T., de Souza, M. M., Quevedo J., Rodrigues C., Sant'Anna, M. K., Madruga, M. and Medina, J. H. (1998) Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav. Pharmacol. 9, 421 427.
- 213 Tronel, S. and Sara, S. J. (2003) Blockade of NMDA receptors in prelimbic cortex induces an enduring amnesia for odorreward associative learning. J. Neurosci. 23, 5472 – 5476.
- 214 Kentros C., Hargreaves E., Hawkins, R. D., Kandel, E. R., Shapiro, M. and Muller, R. V. (1998) Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280, 2121 – 2126.
- 215 Davis, H. P. and Squire, L. R. (1984) Protein synthesis and memory: a review. Psychol. Bull. 96, 518 – 559.
- 216 Micheau, J. and Riedel, G. (1999) Protein kinases: which one is the memory molecule? Cell. Mol. Life Sci. 55, 534 – 548
- 217 Izquierdo I., Bevilaqua, L. R., Rossato, J. I., Bonini, J. S., Medina, J. H. and Cammarota, M. (2006) Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci, 29, 496 – 505.
- 218 Irvine, E. E., von Hertzen, L. S., Plattner, F. and Giese, K. P. (2006) alphaCaMKII autophosphorylation: a fast track to memory. Trends Neurosci. 29, 459 465.
- 219 Bozon B., Kelly A., Josselyn, S. A., Silva, A. J., Davis, S. and Laroche, S. (2003) MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Phil. Trans. R. Soc. Lond. B Biol. Sci. 358, 805 – 814.
- 220 Sweatt, J. D. (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol. 14, 311 – 317.
- 221 Thomas, G. M. and Huganir, R. L. (2004) MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci. 5, 173 – 183
- 222 Kelleher, R. J., 3rd, Govindarajan, A. and Tonegawa, S. (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44, 59 73.
- 223 Purcell, A. L. and Carew, T. J. (2003) Tyrosine kinases, synaptic plasticity and memory: insights from vertebrates and invertebrates. Trends Neurosci. 26, 625 630.
- 224 Nguyen, P. V. and Woo, N. H. (2003) Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog. Neurobiol. 71, 401 – 437.
- 225 Sun, M. K. and Alkon, D. L. (2005) Protein kinase C isozymes: memory therapeutic potential. Curr. Drug Targets CNS Neurol. Disord. 4, 541 – 552.

- 226 Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz, G. and Silva, A. J. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59 68.
- 227 Bernabeu R., Bevilaqua L., Ardenghi P., Bromberg E., Schmitz P., Bianchin M., Izquierdo, I. and Medina, J. H. (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Acad. Sci. USA 94, 7041 7046.
- 228 Guzowski, J. F. and McGaugh, J. L. (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA 94, 2693 – 2698.
- 229 Kogan, J. H., Frankland, P. W. and Silva, A. J. (2000) Longterm memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 47 – 56.
- 230 Pittenger C., Huang, Y. Y., Paletzki, R. F., Bourtchouladze R., Scanlin H., Vronskaya, S. and Kandel, E. R. (2002) Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampusdependent spatial memory. Neuron 34, 447 – 462.
- 231 Wood, M. A., Kaplan, M. P., Park A., Blanchard, E. J., Oliveira, A. M., Lombardi, T. L. and Abel, T. (2005) Transgenic mice expressing a truncated form of CREBbinding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 12, 111 – 119.
- 232 Brightwell, J. J., Smith, C. A., Countryman, R. A., Neve, R. L. and Colombo, P. J. (2005) Hippocampal overexpression of mutant creb blocks long-term, but not short-term memory for a socially transmitted food preference. Learn. Mem. 12, 12 17
- 233 Jones, M. W., Errington, M. L., French, P. J., Fine A., Bliss, T. V. P., Garel S., Charnay P., Bozon B., Laroche, S. and Davis, S. (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289 296.
- 234 Davis S., Bozon, B. and Laroche, S. (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav. Brain Res. 142, 17 30.
- 235 Guzowski, J. F., Lyford, G. L., Stevenson, G. D., Houston, F. P., McGaugh, J. L., Worley, P. F. and Barnes, C. A. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993 4001.
- 236 Lee, J. L., Everitt, B. J. and Thomas, K. L. (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304, 839 843.
- 237 Ambrogi Lorenzini, C. G., Baldi E., Bucherelli C., Sacchetti, B. and Tassoni, G. (1999) Neural topography and chronology of memory consolidation: a review of functional inactivation findings. Neurobiol. Learn. Mem. 71, 1 – 18.
- 238 Daumas S., Halley H., Frances, B. and Lassalle, J. M. (2005) Encoding, consolidation, and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions. Learn. Mem. 12, 375 – 382.
- 239 Murase, S. and Schuman, E. M. (1999) The role of cell adhesion molecules in synaptic plasticity and memory. Curr. Opin. Cell. Biol. 11, 549 – 553.
- 240 Benson, D. L., Schnapp, L. M., Shapiro, L. and Huntley, G. W. (2000) Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends Cell Biol. 10, 473 – 482.
- 241 Gall, C. M. and Lynch, G. (2004) Integrins, synaptic plasticity and epileptogenesis. Adv. Exp. Med. Biol. 548, 12 33.
- 242 Levenson, J. M. and Sweatt, J. D. (2006) Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell. Mol. Life Sci. 63, 1009 1016.
- 243 Frey, U. and Morris, R. G. M. (1997) Synaptic tagging and long-term potentiation. Nature 385, 533 536.

- 244 Frey, U. and Morris, R. G. M. (1998) Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 37, 545 – 552.
- 245 Fonseca R., Nagerl, U. V., Morris, R. G. M. and Bonhoeffer, T. (2004) Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44, 1011 – 1020.
- 246 Impey S., Smith, D. M., Obrietan K., Donahue R., Wade, C. and Storm, D. R. (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595 601.
- 247 Schultz, W. (2006) Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115.
- 248 Gasbarri A., Sulli, A. and Packard, M. G. (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 1 – 22.
- 249 Waltereit, R. and Weller, M. (2003) Signaling from cAMP/ PKA to MAPK and synaptic plasticity. Mol. Neurobiol. 27, 99 – 106.
- 250 Smith, W. B., Starck, S. R., Roberts, R. W. and Schuman, E. M. (2005) Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 45, 765 – 779.
- 251 Bradshaw, K. D., Emptage, N. J. and Bliss, T. V. (2003) A role for dendritic protein synthesis in hippocampal late LTP. Eur. J. Neurosci. 18, 3150 – 3152.
- 252 Vickers, C. A., Dickson, K. S. and Wyllie, D. J. (2005) Induction and maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurons. J. Physiol. 568, 803 – 813.
- 253 Frey U., Schroeder, H. and Matthies, H. (1990) Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Res. 522, 69 – 75.
- 254 Frey U., Matthies, H. and Reymann, K. G. (1991) The effect of dopaminergic D1 receptor blockade during tetanization on the expression of long-term potentiation in the rat CA1 region in vitro. Neurosci. Lett. 129, 111 – 114.
- 255 Huang, Y. Y. and Kandel, E. R. (1995) D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc. Natl. Acad. Sci. USA 92, 2446 – 2450.
- 256 Matthies H., Becker A., Schroeder H., Kraus J., Hollt, V. and Krug, M. (1997) Dopamine D1-deficient mutant mice do not express the late phase of hippocampal long-term potentiation. NeuroReport 8, 3533 – 3535.
- 257 Swanson-Park, J. L., Coussens, C. M., Mason-Parker, S. E., Raymond, C. R., Hargreaves, E. L., Dragunow M., Cohen, A. S. and Abraham, W. C. (1999) A double dissociation within the hippocampus of dopamine D1/D5 receptor and betaadrenergic receptor contributions to the persistence of longterm potentiation. Neuroscience 92, 485 – 497.
- 258 O'Carroll, C. M. and Morris, R. G. M. (2004) Heterosynaptic co-activation of glutamatergic and dopaminergic afferents is required to induce persistent long-term potentiation. Neuropharmacology 47, 324 – 332.
- 259 Otmakhova, N. A. and Lisman, J. E. (1996) D1/D5 dopamine receptor activation increases the magnitude of early longterm potentiation at CA1 hippocampal synapses. J. Neurosci. 16, 7478 – 7486.
- 260 Bach, M. E., Barad M., Son H., Zhuo M., Lu, Y. F., Shih R., Mansuy I., Hawkins, R. D. and Kandel, E. R. (1999) Agerelated defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc. Natl. Acad. Sci. USA 96, 5280 – 5285.
- 261 Sajikumar, S. and Frey, J. U. (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 12 25.
- 262 Mockett, B. G., Brooks, W. M., Tate, W. P. and Abraham, W. C. (2004) Dopamine D1/D5 receptor activation fails to initiate

- an activity-independent late-phase LTP in rat hippocampus. Brain Res. 1021, 92 100.
- 263 Li S., Cullen, W. K., Anwyl, R. and Rowan, M. J. (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat. Neurosci. 6, 526 – 531.
- 264 Davis, C. D., Jones, F. L. and Derrick, B. E. (2004) Novel environments enhance the induction and maintenance of long-term potentiation in the dentate gyrus. J. Neurosci. 24, 6497 – 6506.
- 265 Lemon, N. and Manahan-Vaughan, D. (2006) Dopamine D1/ D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J. Neurosci. 26, 7723 – 7729.
- 266 Kentros, C. G., Agnihotri, N. T., Streater S., Hawkins, R. D. and Kandel, E. R. (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42, 283 295.
- 267 Agnihotri, N. T., Hawkins, R. D., Kandel, E. R. and Kentros, C. (2004) The long-term stability of new hippocampal place fields requires new protein synthesis. Proc. Natl. Acad. Sci. USA 101, 3656 – 3661.
- 268 Packard, M. G. and White, N. M. (1991) Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behav. Neurosci. 105, 295 – 306.
- 269 Bernabeu R., Bevilaqua L., Ardenghi P., Bromberg E., Schmitz P., Bianchin M., Izquierdo, I. and Medina, J. H. (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Acad. Sci. USA 94, 7041 – 7046.
- 270 Gasbarri A., Sulli A., Innocenzi R., Pacitti, C. and Brioni, J. D. (1996) Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience 74, 1037 1044.
- 271 O'Carroll, C. M., Martin, S. J., Sandin J., Frenguelli, B. and Morris, R. G. M. (2006) Dopaminergic modulation of the persistence of hippocampus-dependent memory. Learn. Mem. 13, 760 – 769.
- 272 Vankov A., Herve-Minvielle, A. and Sara, S. J. (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur. J. Neurosci. 7, 1180 – 1187.
- 273 Harley, C. W. (2004) Norepinephrine and dopamine as learning signals. Neural Plast. 11, 191 204.
- 274 Stanton, P. K. and Sarvey, J. M. (1985) Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. J. Neurosci. 5, 2169 – 2176.
- 275 Hopkins, W. F. and Johnston, D. (1988) Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J. Neurophysiol. 59, 667 687.
- 276 Thomas, M. J., Moody, T. D., Makhinson, M. and O'Dell, T. J. (1996) Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 17, 475 482.
- 277 Katsuki H., Izumi, Y. and Zorumski, C. F. (1997) Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. J. Neurophysiol. 77, 3013 3020.
- 278 Chaulk, P. C. and Harley, C. W. (1998) Intracerebroventricular norepinephrine potentiation of the perforant path-evoked potential in dentate gyrus of anesthetized and awake rats: a role for both alpha- and beta-adrenoceptor activation. Brain Res. 787, 59 70.
- 279 Munro, C. A., Walling, S. G., Evans, J. H. and Harley, C. W. (2001) Beta-adrenergic blockade in the dentate gyrus in vivo prevents high frequency-induced long-term potentiation of EPSP slope, but not long-term potentiation of population spike amplitude. Hippocampus 11, 322 328.
- 280 Walling, S. G. and Harley, C. W. (2004) Locus ceruleus activation initiates delayed synaptic potentiation of perforant

- path input to the dentate gyrus in awake rats: a novel beta-adrenergic- and protein synthesis-dependent mammalian plasticity mechanism. J. Neurosci. 24, 598 604.
- 281 Gelinas, J. N. and Nguyen, P. V. (2005) Beta-adrenergic receptor activation facilitates induction of a protein synthesisdependent late phase of long-term potentiation. J. Neurosci. 25, 3294 – 3303.
- 282 Straube, T. and Frey, J. U. (2003) Involvement of betaadrenergic receptors in protein synthesis-dependent late long-term potentiation (LTP) in the dentate gyrus of freely moving rats: the critical role of the LTP induction strength. Neuroscience 119, 473 – 479.
- 283 Almaguer-Melian W., Rojas-Reyes Y., Alvare A., Rosillo, J. C., Frey, J. U. and Bergado, J. A. (2005) Long-term potentiation in the dentate gyrus in freely moving rats is reinforced by intraventricular application of norepinephrine, but not oxotremorine. Neurobiol. Learn. Mem. 83, 72 78.
- 284 Straube T., Korz V., Balschun, D. and Frey, J. U. (2003) Requirement of beta-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus. J. Physiol. 552, 953 – 960.
- 285 Seidenbecher T., Reymann, K. G. and Balschun, D. (1997) A post-tetanic time window for the reinforcement of long-term potentiation by appetitive and aversive stimuli. Proc. Natl. Acad. Sci. USA 94, 1494 1499.
- 286 Packard, M. G. and Cahill, L. (2001) Affective modulation of multiple memory systems. Curr. Opin. Neurobiol. 11, 752 – 756.
- 287 Pare, D. (2003) Role of the basolateral amygdala in memory consolidation. Prog. Neurobiol. 70, 409 420.
- 288 McGaugh, J. L. (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 27, 1 28.
- 289 Richter-Levin, G. (2004) The amygdala, the hippocampus, and emotional modulation of memory. Neuroscientist 10, 31 – 39.
- 290 Kim, J. J. and Diamond, D. M. (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453 – 462.
- 291 Nathan, S. V., Griffith, Q. K., McReynolds, J. R., Hahn, E. L. and Roozendaal, B. (2004) Basolateral amygdala interacts with other brain regions in regulating glucocorticoid effects on different memory functions. Ann. N. Y. Acad. Sci. 1032, 179 182.
- 292 Roozendaal B., Okuda S., de Quervain, D. J. and McGaugh, J. L. (2006) Glucocorticoids interact with emotion-induced noradrenergic activation in influencing different memory functions. Neuroscience 138, 901 – 910.
- 293 Hatfield, T. and McGaugh, J. L. (1999) Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiol. Learn. Mem. 71, 232 – 239.
- 294 Pitkanen A., Pikkarainen M., Nurminen, N. and Ylinen, A. (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat: a review. Ann. N. Y. Acad. Sci. 911, 369 391.
- 295 Pikkarainen M., Ronkko S., Savander V., Insausti, R. and Pitkanen, A. (1999) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J. Comp. Neurol. 403, 229 – 260.
- 296 Kajiwara R., Takashima I., Mimura Y., Witter, M. P. and Iijima, T. (2003) Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinalhippocampal circuit. J. Neurophysiol. 89, 2176 – 2184.
- 297 Ikegaya Y., Saito, H. and Abe, K. (1995) High-frequency stimulation of the basolateral amygdala facilitates the induction of long-term potentiation in the dentate gyrus in vivo. Neurosci. Res. 22, 203 – 207.
- 298 Akirav, I. and Richter-Levin, G. (1999) Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat. J. Neurosci. 19, 10530 – 10535.

- 299 Frey S., Bergado-Rosado J., Seidenbecher T., Pape, H. C. and Frey, J. U. (2001) Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP. J. Neurosci. 21, 3697 – 3703.
- 300 Akirav, I. and Richter-Levin, G. (2002) Mechanisms of amygdala modulation of hippocampal plasticity. J. Neurosci. 22, 9912 – 9921.
- 301 Nakao K., Matsuyama K., Matsuki, N. and Ikegaya, Y. (2004) Amygdala stimulation modulates hippocampal synaptic plasticity. Proc. Natl. Acad. Sci. USA 101, 14270 – 14275.
- 302 von Hertzen, L. S. and Giese, K. P. (2005) Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation. J. Neurosci. 25, 1935 1942.
- 303 Nader K., Schafe, G. E. and Le Doux, J. E. (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722 – 726.
- 304 Morris, R. G. M., Inglis J., Ainge, J. A., Olverman, H. J., Tulloch J., Dudai, Y. and Kelly, P. A. (2006) Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50, 479 – 489.
- 305 Rossato, J. I., Bevilaqua, L. R., Medina, J. H., Izquierdo, I. and Cammarota, M. (2006) Retrieval induces hippocampal-dependent reconsolidation of spatial memory. Learn. Mem. 13, 431 440.
- 306 Nader, K. (2003) Memory traces unbound. Trends Neurosci. 26, 65 72.
- 307 Dudai, Y. (2004) The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51 86.
- 308 Alberini, C. M. (2005) Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci. 28, 51 56.
- 309 Riccio, D. C., Moody, E. W. and Millin, P. M. (2002) Reconsolidation reconsidered. Integr. Physiol. Behav. Sci. 37, 245 – 253.
- 310 Dudai, Y. and Eisenberg, M. (2004) Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44, 93 100.
- 311 Prado-Alcala, R. A., Diaz Del Guante, M. A., Garin-Aguilar, M. E., Diaz-Trujillo A., Quirarte, G. L. and McGaugh, J. L. (2006) Amygdala or hippocampus inactivation after retrieval induces temporary memory deficit. Neurobiol. Learn. Mem. 86, 144 149.
- 312 Squire, L.R. (2006). Lost forever of temporarily misplaced? The long debate about the nature of memory impairment. Learn. Mem., 13, 522 529.
- 313 Land C., Bunsey, M. and Riccio, D. C. (2000) Anomalous properties of hippocampal lesion-induced retrograde amnesia. Psychobiology 28, 476 485.
- 314 Debiec J., LeDoux, J. E. and Nader, K. (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36, 527 538.
- 315 Biedenkapp, J. C. and Rudy, J. W. (2004) Context memories and reactivation: constraints on the reconsolidation hypothesis. Behav. Neurosci. 118, 956 964.
- 316 McGaugh, J. L. (2004) Memory reconsolidation hypothesis revived but restrained: theoretical comment on Biedenkapp and Rudy (2004). Behav. Neurosci. 118, 1140 – 1142.
- 317 Alberini, C. M., Milekic, M. H. and Tronel, S. (2006) Mechanisms of memory stabilization and de-stabilization. Cell. Mol. Life Sci. 63, 999 – 1008.
- 318 Nadel, L. and Bohbot, V. (2001) Consolidation of memory. Hippocampus 11, 56 60.
- 319 Milekic, M. H. and Alberini, C. M. (2002) Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36, 521 – 525.
- 320 Suzuki A., Josselyn, S. A., Frankland, P. W., Masushige S., Silva, A. J. and Kida, S. (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J. Neurosci. 24, 4787 – 4795.

- 321 Frankland, P. W., Ding, H. K., Takahashi E., Suzuki A., Kida, S. and Silva, A. J. (2006) Stability of recent and remote contextual fear memory. Learn. Mem. 13, 451 – 457.
- 322 Teyler, T. J. and DiScenna, P. (1986) The hippocampal memory indexing theory. Behav. Neurosci. 100, 147 154.
- 323 Alvarez, P. and Squire, L. R. (1994) Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl. Acad. Sci. USA 91, 7041 – 7045.
- 324 Murre, J. M. (1996) TraceLink: a model of amnesia and consolidation of memory. Hippocampus 6, 675 684.
- 325 Marr, D. (1970) A theory for cerebral neocortex. Proc. R. Soc. Lond. B Biol. Sci. 176, 161 234.
- 326 McClelland, J. L., McNaughton, B. L. and O'Reilly, R. C. (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419 457.
- 327 O'Reilly, R. C. (in press) The division of labor between the neocortex and the hippocampus. In: Connectionist Models in Cognitive Science. Houghton, G., Ed., Psychology Press, New York.
- 328 French, R. M. (1999) Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128 135.
- 329 Page, M. (2000) Connectionist modelling in psychology: a localist manifesto. Behav. Brain Sci. 23, 443 467
- 330 Squire, L. R., Clark, R. E. and Knowlton, B. J. (2001) Retrograde amnesia. Hippocampus 11, 50 – 55.
- 331 Frankland, P. W. and Bontempi, B. (2005) The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119 130.
- 332 Ribot, T. H. (1883) The Diseases of Memory. Fitzgerald, New York.
- 333 Kim, J. J. and Fanselow, M. S. (1992) Modality-specific retrograde amnesia of fear. Science 256, 675 677.
- 334 Maren S., Aharonov, G. and Fanselow, M. S. (1997) Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav. Brain Res. 88, 261 – 274.
- 335 Anagnostaras, S. G., Maren, S. and Fanselow, M. S. (1999) Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J. Neurosci. 19, 1106 – 1114.
- 336 Winocur, G. (1990) Anterograde and retrograde amnesia in rats with dorsal hippocampal or dorsomedial thalamic lesions. Behav. Brain Res. 38, 145 – 154.
- 337 Winocur G., McDonald, R. M. and Moscovitch, M. (2001) Anterograde and retrograde amnesia in rats with large hippocampal lesions. Hippocampus 11, 18 – 26.
- 338 Clark, R. E., Broadbent, N. J., Zola, S. M. and Squire, L. R. (2002) Anterograde amnesia and temporally graded retrograde amnesia for a nonspatial memory task after lesions of hippocampus and subiculum. J. Neurosci. 22, 4663 – 4669.
- 339 Ross, R. S. and Eichenbaum, H. (2006) Dynamics of hippocampal and cortical activation during consolidation of a nonspatial memory. J. Neurosci. 26, 4852 – 4859.
- 340 Wiig, K. A., Cooper, L. N. and Bear, M. F. (1996) Temporally graded retrograde amnesia following separate and combined lesions of the perirhinal cortex and fornix in the rat. Learn. Mem. 3, 313 – 325.
- 341 Kim, J. J., Clark, R. E. and Thompson, R. F. (1995) Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses. Behav. Neurosci. 109, 195 – 203.
- 342 Takehara K., Kawahara S., Takatsuki, K. and Kirino, Y. (2002) Time-limited role of the hippocampus in the memory for trace eyeblink conditioning in mice. Brain Res. 951, 183 – 190.
- 343 Ramos, J. M. (1998) Retrograde amnesia for spatial information: a dissociation between intra and extramaze cues following hippocampus lesions in rats. Eur. J. Neurosci. 10, 3295 – 3301.
- 344 Kubie, J. L., Sutherland, R. J. and Miller, R. U. (1999) Hippocampal lesions produce a temporally graded retrograde

- amnesia on a dry version of the Morris swimming task. Psychobiology 27, 313 330.
- 345 Izquierdo I., Cammarota M., Medina, J. H. and Bevilaqua, L. R. (2004) Pharmacological findings on the biochemical bases of memory processes: a general view. Neural Plast. 11, 159 189.
- 346 Bontempi B., Laurent-Demir C., Destrade, C. and Jaffard, R. (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400, 671 – 675.
- 347 Maviel T., Durkin, T. P., Menzaghi, F. and Bontempi, B. (2004) Sites of neocortical reorganization critical for remote spatial memory. Science 305, 96 – 99.
- 348 Frankland, P. W., Bontempi B., Talton, L. E., Kaczmarek, L. and Silva, A. J. (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881 883.
- 349 Gusev, P. A., Cui C., Alkon, D. L. and Gubin, A. N. (2005) Topography of Arc/Arg3.1 mRNA expression in the dorsal and ventral hippocampus induced by recent and remote spatial memory recall: dissociation of CA3 and CA1 activation. J. Neurosci. 25, 9384 – 9397.
- 350 Riedel G., Micheau J., Lam, A. G., Roloff, E. L., Martin, S. J., Bridge H., de Hoz L., Poeschel B., McCulloch, J. and Morris, R. G. M. (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat. Neurosci. 2, 898 – 905.
- 351 Shimizu E., Tang, Y. P., Rampon, C. and Tsien, J. Z. (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290, 1170 – 1174.
- 352 Day, M. and Langston, R. F. (2006) Post-training N-methyl-D-aspartate receptor blockade offers protection from retrograde interference but does not affect consolidation of weak or strong memory traces in the water maze. Neuroscience 137, 19 28.
- 353 Day, M. and Morris, R. G. M. (2001) Memory consolidation and NMDA receptors: discrepancy between genetic and pharmacological approaches. Science 293, 755.
- 354 Shimizu E., Tang Y.-P., Rampon C., Feng, R. and Tsien, J. Z. (2001) Memory consolidation and NMDA receptors: discrepancy between genetic and pharmacological approache: Response to Day and Morris. Science 293, 755 – 756.
- 355 Villarreal, D. M., Do V., Haddad, E. and Derrick, B. E. (2002) NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat. Neurosci. 5, 48 – 52.
- 356 Frankland, P. W., O'Brien C., Ohno M., Kirkwood, A. and Silva, A. J. (2001) Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 411, 309 – 313.
- 357 Bontempi B., Laurent-Demir C., Destrade, C. and Jaffard, R. (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400, 671 – 675.
- 358 Teixeira, C. M., Pomedli, S. R., Maei, H. R., Kee, N. and Frankland, P. W. (2006) Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J. Neurosci. 26, 7555 – 7564.
- 359 Ryan L., Nadel L., Keil K., Putnam K., Schnyer D., Trouard, T. and Moscovitch, M. (2001) Hippocampal complex and retrieval of recent and very remote autobiographical memories: evidence from functional magnetic resonance imaging in neurologically intact people. Hippocampus 11, 707 714.
- 360 Rudy, J. W., Biedenkapp, J. C. and O'Reilly, R. C. (2005) Prefrontal cortex and the organization of recent and remote memories: an alternative view. Learn. Mem. 12, 445 – 446.
- 361 Bunge, S. A., Burrows, B. and Wagner, A. D. (2004) Prefrontal and hippocampal contributions to visual associative recognition: interactions between cognitive control and episodic retrieval. Brain Cogn. 56, 141 – 152.
- 362 Abraham, W. C. and Robins, A. (2005) Memory retention the synaptic stability versus plasticity dilemma. Trends Neurosci. 28, 73 – 78.

- 363 Walker, M. P. and Stickgold, R. (2006) Sleep, memory, and plasticity. Annu. Rev. Psychol. 57, 139 166.
- 364 Pavlides, C. and Winson, J. (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J. Neurosci. 9, 2907 – 2918.
- 365 Wilson, M. A. and McNaughton, B. L. (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265, 676 – 679.
- 366 Skaggs, W. E. and McNaughton, B. L. (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870 – 1973.
- 367 Qin, Y. L., McNaughton, B. L., Skaggs, W. E. and Barnes, C. A. (1997) Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Phil. Trans. R. Soc. Lond. B Biol. Sci. 352, 1525 1533.
- 368 Nadasdy Z., Hirase H., Czurko A., Csicsvari, J. and Buzsaki, G. (1999) Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497 – 9507.
- 369 Lee, A. K. and Wilson, M. A. (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183 – 1194.
- 370 Louie, K. and Wilson, M. A. (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29, 145 – 156.
- 371 Buzsaki G., Horvath Z., Urioste R., Hetke, J. and Wise, K. (1992) High-frequency network oscillation in the hippocampus. Science 256, 1025 – 1027.
- 372 Ylinen A., Bragin A., Nadasdy Z., Jando G., Szabo I., Sik, A. and Buzsaki, G. (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30 46.
- 373 Siapas, A. G. and Wilson, M. A. (1998) Coordinated interactions between hippocampal ripples and cortical spin-dles during slow-wave sleep. Neuron 21, 1123 1128.
- 374 Sirota A., Csicsvari J., Buhl, D. and Buzsaki, G. (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. USA 100, 2065 – 2069.
- 375 Battaglia, F. P., Sutherland, G. R. and McNaughton, B. L. (2004) Hippocampal sharp wave bursts coincide with neocortical 'up-state' transitions. Learn. Mem. 11, 697 704.
- 376 Molle M., Yeshenko O., Marshall L., Sara, S. J. and Born, J. (2006) Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. J. Neurophysiol. 96, 62 – 70.
- 377 Buzsaki, G. (1989) Two-stage model of memory trace formation: a role for 'noisy' brain states. Neuroscience 31, 551 – 570.
- 378 Buzsaki, G. (1996) The hippocampo-neocortical dialogue. Cereb. Cortex 6, 81 92.
- 379 Sutherland, G. R. and McNaughton, B. (2000) Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr. Opin. Neurobiol. 10, 180 186.
- 380 Foster, D. J. and Wilson, M. A. (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680 683.
- 381 Bolhuis, J. J., Stewart, C. A. and Forrest, E. M. (1994) Retrograde amnesia and memory reactivation in rats with ibotenate lesions to the hippocampus or subiculum. Q. J. Exp. Psychol. B 47, 129 – 150.
- 382 Mumby, D. G., Astur, R. S., Weisend, M. P. and Sutherland, R. J. (1999) Retrograde amnesia and selective damage to the hippocampal formation: memory for places and object discriminations. Behav. Brain Res. 106, 97 107.
- 383 Sutherland, R. J., Weisend, M. P., Mumby D., Astur, R. S., Hanlon, F. M., Koerner A., Thomas, M. J., Wu Y., Moses, S. N., Cole C., Hamilton, D. A. and Hoesing, J. M. (2001) Retrograde amnesia after hippocampal damage: recent vs. remote memories in two tasks. Hippocampus 11, 27 – 42.
- 384 Martin, S. J., de Hoz, L. and Morris, R. G. M. (2005) Retrograde amnesia: neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after reminding. Neuropsychologia 43, 609 – 624.

- 385 Clark, R. E., Broadbent, N. J. and Squire, L. R. (2005) Hippocampus and remote spatial memory in rats. Hippocampus 15, 260 – 272.
- 386 Clark, R. E., Broadbent, N. J. and Squire, L. R. (2005) Impaired remote spatial memory after hippocampal lesions despite extensive training beginning early in life. Hippocampus 15, 340 – 346.
- 387 Broadbent, N. J., Squire, L. R. and Clark, R. E. (2006) Reversible hippocampal lesions disrupt water maze performance during both recent and remote memory tests. Learn. Mem. 13, 187 – 191.
- 388 Nadel, L. and Moscovitch, M. (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217 227.
- 389 Moscovitch, M. and Nadel, L. (1998) Consolidation and the hippocampal complex revisited: in defense of the multipletrace model. Curr. Opin. Neurobiol. 8, 297 – 300.
- 390 Rosenbaum, R. S., Winocur, G. and Moscovitch, M. (2001) New views on old memories: re-evaluating the role of the hippocampal complex. Behav. Brain Res. 127, 183 – 197.
- 391 Moscovitch M., Nadel L., Winocur G., Gilboa, A. and Rosenbaum, R. S. (2006) The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 16, 179 – 190.
- 392 Cermak, L. S. (1984) The episodic/semantic distinction in amnesia. In: The Neuropsychology of Memory (Squire, L. R. and Butters, N., Eds.), pp. 55 – 62, Guilford Press, New York
- 393 Meeter, M. and Murre, J. M. (2004) Consolidation of long-term memory: evidence and alternatives. Psychol. Bull. 130, 843 857.
- 394 Nadel L., Samsonovich A., Ryan, L. and Moscovitch, M. (2000) Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus 10, 352 368.
- 395 Moscovitch M., Rosenbaum, R. S., Gilboa A., Addis, D. R., Westmacott R., Grady C., McAndrews, M. P., Levine B., Black S., Winocur, G. and Nadel, L. (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J. Anat. 207, 35 – 66.
- 396 Bayley, P. J., Hopkins, R. O. and Squire, L. R. (2003) Successful recollection of remote autobiographical memories by amnesic patients with medial temporal lobe lesions. Neuron 38, 135 44.
- 397 Bayley, P. J., Gold, J. J., Hopkins, R. O. and Squire, L. R. (2005) The neuroanatomy of remote memory. Neuron 46, 799 – 810
- 398 Winocur G., Moscovitch M., Fogel S., Rosenbaum, R. S. and Sekeres, M. (2005) Preserved spatial memory after hippocampal lesions: effects of extensive experience in a complex environment. Nat. Neurosci. 8, 273 – 275.
- 399 Teng, E. and Squire, L. R. (1999) Memory for places learned long ago is intact after hippocampal damage. Nature 400, 675 – 677
- 400 Rosenbaum, R. S., Priselac S., Kohler S., Black, S. E., Gao F., Nadel, L. and Moscovitch, M. (2000) Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nat. Neurosci. 3, 1044 – 1048.
- 401 McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard K., Jung, M. W., Knierim, J. J., Kudrimoti H., Qin Y., Skaggs, W. E., Suster, M. and Weaver, K. L. (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173 – 185.
- 402 Maaswinkel H., Jarrard, L. E. and Whishaw, I. Q. (1999) Hippocampectomized rats are impaired in homing by path integration. Hippocampus 9, 553 – 561.
- 403 Etienne, A. S. and Jeffery, K. J. (2004) Path integration in mammals. Hippocampus 14, 180 192.
- 404 Terrazas A., Krause M., Lipa P., Gothard, K. M., Barnes, C. A. and McNaughton, B. L. (2005) Self-motion and the hippocampal spatial metric. J. Neurosci. 25, 8085 8096.

- 405 McNaughton, B. L., Battaglia, F. P., Jensen O., Moser, E. I. and Moser, M. B. (2006) Path integration and the neural basis of the 'cognitive map'. Nat. Rev. Neurosci. 7, 663 678.
- 406 Whishaw, I. Q. and Maaswinkel, H. (1998) Rats with fimbriafornix lesions are impaired in path integration: a role for the hippocampus in 'sense of direction'. J. Neurosci. 18, 3050 – 3058.
- 407 Knowlton, B. J. and Fanselow, M. S. (1998) The hippocampus, consolidation and on-line memory. Curr. Opin. Neurobiol. 8, 293 – 296.
- 408 de Hoz L., Martin, S. J. and Morris, R. G. M. (2004) Forgetting, reminding, and remembering: the retrieval of lost spatial memory. PLoS Biol. 2, E225.
- 409 Remondes, M. and Schuman, E. M. (2004) Role for a cortical input to hippocampal area CA1 in the consolidation of a longterm memory. Nature 431, 699 – 703.
- 410 Ros J., Pellerin L., Magara F., Dauquet J., Schenk, F. and Magistretti, P. J. (2006) Metabolic activation pattern of distinct hippocampal subregions during spatial learning and memory retrieval. J. Cereb. Blood Flow Meatab. 26, 468 – 477.

- 411 Tse D., Langston, R. F., Kakeyama M., Spooner P., Tulloch J., Wood, E. R. and Morris, R. G. M. (2006) Schemas and memory consolidation: paired-associate memory can rapidly consolidate and become hippocampal-independent. FENS Abstr., vol. 3, A160.27.
- 412 Winocur G., Moscovitch M., Caruana, D. A. and Binns, M. A. (2005) Retrograde amnesia in rats with lesions to the hippocampus on a test of spatial memory. Neuropsychologia 43, 1580 – 1590.
- 413 Wood, E. R., Dudchenko, P. A. and Eichenbaum, H. (1999) The global record of memory in hippocampal neuronal activity. Nature 397, 613 – 616.
- 414 de Hoz, L. and Wood, E. R. (2006) Dissociating the past from the present in the activity of place cells. Hippocampus 16, 704 715.
- 415 Aggleton, J. P. and Brown, M. W. (1999) Episodic memory, amnesia, and the hippocampal anterior thalamic axis. Behav. Brain Sci. 22, 425 444.